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Towards Refuting UGC



The MAX CUT Problem

• Input:  G = (V,E) G



The MAX CUT Problem

• Input:  G = (V,E)
• Objective : Partition G 

in (S,S’) as to MAXIMIZE
number of edges cut 

• [Karp ’72]: MAX CUT is NP-complete
• What about approximating MAX CUT?

G



The MAX CUT Problem

• Input:  G = (V,E)

• Objective : Partition G 

in (S,S’) as to MAXIMIZE

number of edges cut

Approximation algorithms:
• Random cut (trivial): half of optimal

• [GW’94]: αGW=0.878 approximation  algorithm 
of MAX CUT

G
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arccos( )/min
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How many of you bet this is 
best we can do?



The MAX CUT Problem

• Input:  G = (V,E)

• Objective : Partition G 

in (S,S’) as to MAXIMIZE

number of edges cut

Approximation algorithms:

• Random cut (trivial): half of optimal

• [GW’94]: αGW=0.878 approximation  algorithm 
of MAX CUT

G
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GW
arccos( )/min
(1 )/2

If Unique Games Conjecture 

true, then it is!



Problem Best Approximation 
Algorithm Known UGC-Hardness

MaxCut 0.878[GW94] 0.878 [KKMO07]

Vertex 
Cover 2 2-e [KR06]

Max k-CSP W(k/2k)[CMM07] O(k/2k)[ST,AM,GR]

Previous inapproximability not a coincidence!
Unique Games Conjecture (UGC) captures 

exact inapproximability of many more problems

Can We Hope for Better Approximation 
Algorithms in P?
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What are Unique Games?

:70 million pages

Yahoo!: 69 million pages

1. Unique Games are popular not only among computer scientist!

2. We can purchase Unique 
Games on-line!

3. Unique Games are related 
to the Unique Games 
Conjecture…

Google: 178 million pages



Unique Games = Unique Label Cover Problem
Given: set of constraints

)3mod( 021 =- xx

)3mod( 131 =- xx

)3mod( 032 =- xx

Linear Equations mod k :
xi-xj = cij mod k

Find labeling that satisfies maximum 
number of constraints. 

GOAL

EXAMPLE

x2

x1

x3

G

k =“alphabet” size

The constraint graph

)3mod( 021 =- xx

)3mod( 032 =- xx

)3mod( 131 =- xx



Unique Games , an Example
Given: set of constraints

Linear Equations mod k :
xi-xj = cij mod k

Find labeling that satisfies maximum 
number of constraints. 

GOAL

EXAMPLE

x2

x1

x3

G

0

0

0

k =“alphabet” size

The constraint graph

Satisfy 2/3 constraints

)3mod( 021 =- xx

)3mod( 131 =- xx

)3mod( 032 =- xx

)3mod( 021 =- xx

)3mod( 032 =- xx

)3mod( 131 =- xx



Unique Games , an Example
Given: set of constraints

Linear Equations mod k :
xi-xj = cij mod k

Find labeling that satisfies maximum 
number of constraints. 

GOAL

EXAMPLE

x2

x1

x3

G

0

0

0

k =“alphabet” size

The constraint graph

Rest of the talk: d-regular graphs

)3mod( 021 =- xx

)3mod( 131 =- xx

)3mod( 032 =- xx

)3mod( 021 =- xx

)3mod( 032 =- xx

)3mod( 131 =- xx



Unique Games Conjecture

• [Khot’02] For every positive ε and δ there is a 

large enough k s.t. for some instance of Unique 

Games with alphabet size k and OPT > 1 – ε, it is 

NP hard to satisfy a δ fraction of all constraints.

• Given a UG instance (graph and set of constraints 

over alphabet of size k) with the guarantee that it 

is 99% satisfiable, it is NP-hard to find an 

assignment that satisfies more than ½ of the 

constraints (for some 99% and some ½). 

Is Unique Games Conjecture True?



Unique Games Conjecture
• UGC: given a UG instance (graph and set of 

constraints over alphabet of size k) with the 
guarantee that it is 99% satisfiable, it is NP-
hard to find an assignment that satisfies more 
than ½ of the constraints (for some 99% and 
some ½). 

Really embarrassing not to know, 
since solving systems of linear 
equations (exactly) is very easy!



Where to begin if we want to refute UGC?

• Several attempts in recent years to refute or prove UGC.
• Lot of progress but still no consensus.
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• Classify graphs according to their “spectral profile” 
(eigenvalues)

• Expanders [AKKTSV’08,KT’08],
• Local  expanders, graphs with relatively few large 

eigenvalues [AIMS’09,SR’09,K’10]

• Find distributions that are hard? 
– Random Instances : NO! Follows from expander result.
– Quasi-Random Instances? [KMM’10] NO!

Plan of attack: start ruling out cases.



Algorithm On 1-e instances
Khot 1-O(k2 e1/5√log(1/e))
Trevisan 1-O(3√(e log n))
Gupta-Talwar 1-O(e log n)
CMM1 k-e/2-e

CMM2 1-O(e √logn √logk)

Summary: Algorithmic Results for UG

General 
Graphs

Expander AKKTSV’08
KT’08,MM’10

Constant, depends 
on conductance

Special Graphs

AIMS’09,
SR’09

Constant, depends 
on local expansion

SDP/LP 
based

Tight for SDP, 
there is 

counterexample

Almost all  above approaches 
were LP or SDP based

Local 
expander



AKKTSV’08
KT’08,MM’10

Constant, depends 
on conductance

AIMS’09,
SR’09

Constant, depends 
on local expansion

Summary: Algorithmic Results for UG

Few large 
eigenvalues K’10 Quality and running time 

depends on eigenspace

Purely 
SPECTRAL 
Approach

“beats” SDP

Algorithm On 1-e instances
Khot 1-O(k2 e1/5√log(1/e))
Trevisan 1-O(3√(e log n))
Gupta-Talwar 1-O(e log n)
CMM1 k-e/2-e

CMM2 1-O(e √logn √logk)

General 
Graphs

Expander

Special Graphs

SDP/LP 
based

Tight for SDP, 
there is 

counterexample
Local 

expander
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AKKTSV’08
KT’08,MM’10

Constant, depends 
on conductance

AIMS’09,
SR’09

Constant, depends 
on local expansion

Summary: Algorithmic Results for UG

K’10 Quality and running time 
depends on eigenspace

Algorithm On 1-e instances
Khot 1-O(k2 e1/5√log(1/e))

Trevisan 1-O(3√(e log n))

Gupta-Talwar 1-O(e log n)

CMM1 k-e/2-e

CMM2 1-O(e √logn √logk)

General 
Graphs

Expander

Special Graphs

Few large 
eigenvalues

Local 
expander

ABS’10: Subexponential time algorithm for ANY instanceKMM’10: Semi-Random instances are easy
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2. Spectra of Graphs

3. Towards Refuting UGC on almost-all Graphs

1. Unique Games Conjecture(UGC)

4. Open Questions



Spectral Graph Theory and 
Applications

- Image Segmentation

How to pick the right segmentation? 



Spectral Graph Theory and 
Applications

- Data clustering: 
find points of similarity   

Many more : 

-Coding Theory
-Network Security
-Convex Optimization
-…



Representing Graphs 

V: n nodes
E: m edges

G = {V,E}

Obviously, we can represent a graph
with an nxn matrix

wij

i j

wij

Adjacency matrix
j

i

A=

î
í
ì

=
jibetweenedgenoif
jiedgeofweightw
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Representing Graphs 

V: n nodes
E: m edges

G = {V,E}

wij

i j

Not-so-obvious:
Once we have matrix representation

view graph as linear operator

Axy =

nnA Â®Â:
Can be used to multiply vectors Amazing how this point of view

gives information about graph

Obviously, we can represent a graph
with an nxn matrix

wij

Adjacency matrix
j

i

A=



Graph Spectrum

wij
i j

Adjacency matrix

Already know: 
A multiplies vectors

There are “special” vectors that
don’t “rotate” just scale:

Well-known:
spectrum of linear operators 
gives information about them

Av vl=

wij

j

i

A =

eigenvectors

v eigenvector, 
λ eigenvalue (“scaling” factor )

nnA Â®Â:



Graph Spectrum

wij
i j

Av vl=
v

v eigenvector, 
λ eigenvalue

Adjacency matrix

wij

j

i

A =

nnA Â®Â:



Graph Spectrum

wij
i j

Adjacency matrix

wij

j

i

A =

Av vl=
v

Av=!v nnA Â®Â:

v eigenvector, 
λ eigenvalue



Graph Spectrum

wij
i j

Graph SPECTRUM =
List of eigenvalues {λ	1³ λ 2 ³ …³ λ n }

Adjacency matrix

nnA Â®Â:

wij

j

i

A =

Av vl=

v eigenvector, 
λ eigenvalue



“Listen” to the Graph

List of eigenvalues
{λ	1³ λ 2 ³…³ λ	n }:graph SPECTRUM

wij
i j

Eigenvalues reveal global graph properties
not apparent from edge structure

Hear shape of the drum

Adjacency matrix

wij

j

i

A =

A drum:
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“Listen” to the Graph

wij
i j

Eigenvalues reveal global graph properties
not apparent from edge structure

Hear shape of the drum

Adjacency matrix

wij

j

i

A =

Its sound
(eigenfrequenies):

List of eigenvalues
{λ	1³ λ 2 ³…³ λ	n }:graph SPECTRUM



“Listen” to the Graph

wij
i j

Eigenvalues reveal global graph properties
not apparent from edge structure

Adjacency matrix

wij

j

i

A =

If graph was a drum, 
spectrum would be its sound

List of eigenvalues
{λ	1³ λ 2 ³…³ λ	n }:graph SPECTRUM



Eigenvectors are Functions on Graph

Av vl=Â®ÂÎ Vvv n :,

=)(iv value at node i

v(2)

v(1)

v(3)

v(5)

v(4)
V: 2n nodes

Kn Kn
v(7)

v(6)

v(8)

v(10)

v(9)



Eigenvectors are Functions on Graph

V: 2n nodes

Kn Kn

“Coloring” 

Â®ÂÎ Vvv n :,

=)(iv value at node i different shade of grey

Av vl=



So, let’s See the Eigenvectors
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The second eigenvector
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Third Eigenvector
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Fourth Eigenvector
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Representing Graphs (d-regular) 

wij

Adjacency matrix
j

i

A=

! − λ$ also called  “algebraic connectivity”

The further from 0, the more connected

λ ≡ λ$ < ! ⇔ ()*+ℎ -.//0-10!!

List of eigenvalues
{d=λ1 ³ λ 2 ³…³ λ n }:graph 

SPECTRUM



Cuts and Algebraic Connectivity

2/||,
||
)',()',( nS

S
SSESScut £=

Cuts in a graph:

Graph not well-connected when “easily” cut in two pieces

S S’



Cuts and Algebraic Connectivity

Graph not well-connected when “easily” cut in two pieces

S S’

||
),(min)( 2/|:| S
SSEGh nSS £=

Sparsest Cut:

Would like to know Sparsest Cut but NP 
hard to find

How does algebraic connectivity relate to standard connectivity?

Theorem(Cheeger-Alon-Milman): ( ) 2
2

d h G d dl l-
£ £ -



Cuts and Algebraic Connectivity

Graph not well-connected when “easily” cut in two pieces

S S’

||
),(min)( 2/|:| S
SSEGh nSS £=

Sparsest Cut:

Algebraic connectivity 
large 

Graph 
well-connected

How does algebraic connectivity relate to standard connectivity?

Would like to know Sparsest Cut but NP 
hard to find



Cuts and Algebraic Connectivity

In fact, we can find a cut with the guarantee below, from 
the second eigenvector (and from all the eigenvectors)

S S’

||
),(min)( 2/|:| S
SSEGh nSS £=

Sparsest Cut:

( ) 2
2

d h G d dl l-
£ £ -



Graphs with no Small Cuts
Certain graphs have no small cuts: Expanders

Very useful for applications
• Constructing robust networks.

• Routing.

• Maximizing throughput with 

fixed network topology.

• Error-correcting codes.

• Complexity theory.



Expanders in a Nutshell

S

S’

Edge expansion:

(Spectral Gap): d-λ=γd

Cheeger : 
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Unique Games = Unique Label Cover Problem
Given: set of constraints

)3mod( 021 =- xx

)3mod( 131 =- xx

)3mod( 032 =- xx

Linear Equations mod k :
xi-xj = cij mod k

Find labeling that satisfies maximum 
number of constraints. 

GOAL

EXAMPLE

x2

x1

x3

G

k =“alphabet” size

The constraint graph

)3mod( 021 =- xx

)3mod( 032 =- xx

)3mod( 131 =- xx



Unique Games and Graphs
1. The “constraint graph”

x2

x1

x3

G

2. The “label-extended” graph

x2

x1

x3

0

1

2

0 1
2

01

2

)3mod( 021 =- xx

)3mod( 032 =- xx

)3mod( 131 =- xx

)3mod( 021 =- xx

)3mod( 032 =- xx

)3mod( 131 =- xx

•Replace each vertex with
k vertices- one for each label



Unique Games and Graphs
1. The “constraint graph”

x2

x1

x3

G

•Replace each edge with the “permutation matching”
x2

x1

x3

0

1

2

0 1
2

01

2

2. The “label-extended” graph

)3mod( 021 =- xx

)3mod( 032 =- xx

)3mod( 131 =- xx

)3mod( 032 =- xx

)3mod( 131 =- xx

•Replace each vertex with
k vertices- one for each label
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Unique Games and Graphs
1. The “constraint graph”

x2

x1

x3

G

x2

x1

x3

0

1

2

0 1
2

01

2

2. The “label-extended” graph

•Replace each edge with the “permutation matching”

)3mod( 021 =- xx

)3mod( 032 =- xx

)3mod( 131 =- xx

•Replace each vertex with
k vertices- one for each label



More Graph Theory: The Label-Extended 
Graph

0
1
2

0 1
2

01
2

M has each non – zero entry (u,w) replaced by a 
block corresponding  to the permutation on edge

GRAPH THEORY?
it’s a graph, it has adjacency matrix!

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1



Sketch UGC False on Expanders

UGC FALSE on expanders[AKKTSV’08,KT’08 
MM’10]: 
When UG instance highly satisfiable and graph 
is expander, ptime algorithm finds labeling that 
satisfies 99% of the constraints



Problem Best Approximation 
Algorithm Known UGC-Hardness

MaxCut 0.878[GW94] 0.878 [KKMO07]

Vertex 
Cover 2 2-e [KR06]

Max k-CSP W(k/2k)[CMM07] O(k/2k)[ST,AM,GR]

Uniform 
Sparsest Cut √logn  [ARV04] ?No hardness even assuming 

UGC unless expansion

Why Expanders? Expansion of Unique 
Games and Sparsest Cut
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Proof with Graph Theory: From Labelings
to Spectra

•Set S that contains exactly one “small” 
node from each node group = labeling
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Proof with Graph Theory: From Labelings

to Spectra

•Corresponds to a “characteristic vector”.

•Set S that contains exactly one “small” 

node from each node group = labeling
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)0,0,0(c•Corresponds to a cut (S,S’).
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Proof Intuition: a Perfect Game

Let’s look at a perfectly satisfiable

game for intuition…

Graph is disconnected, 
it has second eigenvalue λ = d 
(in fact, it has k eigenvalues = d)

As mentioned earlier, we can find 
cuts from those eigenvectors that
cut zero edges. (d- λ	=0)

If graph G was originally connected,
those are the only “sparsest cuts”.
They correspond to perfect labelings.



0

1

2

0
1

2

01

2

S

Proof Intuition: a Perfect Game

Let’s look at a perfectly satisfiable

game for intuition…

Graph is disconnected, 
it has second eigenvalue λ = d 
(in fact, it has k eigenvalues = d)

As mentioned earlier, we can find 
cuts from those eigenvectors that
cut zero edges. (d- λ	=0)

If graph G was originally connected,
those are the only “sparsest cuts”.
They correspond to perfect labelings.

A 1-e game is an 
almost-perfectly-
satisfiable one
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Proof Intuition: a Perfect Game

Let’s look at a perfectly satisfiable

game for intuition…

Graph is disconnected, 
it has second eigenvalue λ = d 
(in fact, it has k eigenvalues = d)

As mentioned earlier, we can find 
cuts from those eigenvectors that
cut zero edges. (d- λ	=0)

If graph G was originally connected,
those are the only “sparsest cuts”.
They correspond to perfect labelings.

expander

A 1-e game is an 
almost-perfectly-
satisfiable one
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Proof Intuition: a Perfect Game

Let’s look at a perfectly satisfiable

game for intuition…

Graph is disconnected, 
it has second eigenvalue λ = d 
(in fact, it has k eigenvalues = d)

As mentioned earlier, we can find 
cuts from those eigenvectors that
cut zero edges. (d- λ	=0)

If graph G was originally connected,
those are the only “sparsest cuts”.

expander

They correspond to almost-perfect labelings

A 1-e game is an 
almost-perfectly-
satisfiable one



Proof: Reverse Engineering +  Graph Spectra

xw -xv =0 mod 3

xu -xw =0 
mod 3

0

0 ?

1- ε Game

xv -xu =1 mod 3



Think of it as “coming 
from” adversarialy
perturbed  completely 
satisfiable game

xv -xu =0 mod 3
xu -xw =0 
mod 3

0

0 0

Perfect Game:

xw -xv =0 mod 3

xv -xu =1 mod 3
xu -xw =0 
mod 3

0

0 ?

1- ε Game

xw -xv =0 mod 3

Proof: Reverse Engineering +  Graph Spectra



Think of it as “coming 
from” adversarialy
perturbed  completely 
satisfiable game

Perfect Game:

xw -xv =0 mod 3

xv -xu =1 mod 3

xu -xw =0 
mod 3

0

0 ?

1- ε Game

0
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01
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xv -xu =0 mod 3
xu -xw =0 
mod 3

0

0 0
xw -xv =0 mod 3
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Proof: Reverse Engineering +  Graph Spectra



“Labeling” eigenvectors:
The k-dimensional espace Y of 
evalues equal to d contains all the 
information for the best labeling

First  few eigenvectors:
The k “labeling vectors” have large 

projection onto espace W with 
evalues >(1- 200ε)d

Perfect Game: 1- ε Game
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Proof: Reverse Engineering +  Graph Spectra



“Labeling” eigenvectors:
The k-dimensional espace Y of 
evalues equal to d contains all the 
information for the best labeling

First  few eigenvectors:
The k “labeling vectors” have large 

projection onto espace W with 
evalues >(1- 200ε)d
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“Labeling” eigenvectors:
The k-dimensional espace Y of 
evalues equal to d contains all the 
information for the best labeling

First  few eigenvectors:
The k “labeling vectors” have large 

projection onto espace W with 
evalues >(1- 200ε)d

Perfect Game: 1- ε Game
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could just “read off” a good labeling
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Proof: Reverse Engineering +  Graph Spectra



Searching for a Needle in a Haystack?

But we need to find a 
particular vector in this 

whole space W!
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Searching for a Needle, but “Efficiently”

But we need to find a 
particular vector in this 

whole space W!

One point of the net is close to the vector we want

We find this vector and then “read off” the coordinates 

Most blocks have  (unique) maximum entry in the position that 
corresponds  to the original value of node u
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Discretize the space 

by net!
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Searching for a Needle, but “Efficiently”

But we need to find a 
particular vector in this 

whole space W!
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Idea: 
Discretize the space 

by net!

Algorithm runs in time ~ #points in the net
= 

exponential in the dimension of eigenspace W
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The Dimension of W for Expanders
(Spectral Gap)=

d -λ	 = γ d

S

S’
G



The Dimension of W for Expanders
Perfect Game: 1- ε Game:
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(Spectral Gap)=
d -λ	 = γ d 
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(Spectral gap between Y,Y�)= absgap= γd
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The Dimension of W for Expanders
Perfect Game: 1- ε Game:

÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

=

0
0
1
0
0
1
0
0
1

)0,0,0(c

÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

=

0
0
1
0
0
1
0
0
1

)0,0,0(c

÷÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

çç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

=

3
2
1

0
0
1
0
0
1

m
m
m

w

WY

(Spectral Gap)=
d -λ	 = γ d 

G

“The sin µ” Theorem [DK’70] : Angle between Y and “perturbed

analog of Y” small

Equivalently, we can write every 
vector w in W as w = α y + β y�, y in Y 

(Spectral gap between Y,Y�)= absgap= γd

W is “perturbed analog” of Y
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The Dimension of W for Expanders
Perfect Game: 1- ε Game:

÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

=

0
0
1
0
0
1
0
0
1

)0,0,0(c

÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

=

0
0
1
0
0
1
0
0
1

)0,0,0(c

÷÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷
÷

ø

ö

çç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç
ç

è

æ

=

3
2
1

0
0
1
0
0
1

m
m
m

w

WY

(Spectral Gap)=
d -λ	 = γ d 

G

(Spectral gap between Y,Y�)= absgap= γd

“The sin µ” Theorem [DK’70] : Angle between Y and “perturbed
analog of Y” small

W is “perturbed analog” of Y

W is close to Y so dim(W) ≤dim(Y) =k
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A General Algorithm

9.0, »wc
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Algorithm runs in time ~ #points in the net
= 

exponential in the dimension of eigenspace W
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For expanders,
W is close to Y so 

dim(W) ≤dim(Y) =k
Running time is
2   ≈ 2      ≈ poly(n)k log n



A General Algorithm
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Another Special Case: The “Khot-Vishnoi” 
Graph

Graph that “cheats” a 
canonical semidefinite

program for UG

9.0, »wc
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Algorithm runs in time ~ #points in the net
= 

exponential in the dimension of eigenspace

We show: Eigenspace in 
question has poly-

logarithmic dimension
W



Graph that “cheats” a 
canonical semidefinite

program for UG

Algorithm runs in time ~ #points in the net
= 

quasi-polynomial

We show: Eigenspace in 
question has poly-

logarithmic dimension
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Another Special Case: The “Khot-Vishnoi” 
Graph



UGC and the Spectrum of General Graphs

• After expanders, we realized that other constraint
graphs are easy for UGC.
• How “easy” the graph is, depends on the number
of large (close to d) eigenvalues of the adjacency 
matrix of the label-extended graph.
• Could solve previously “hardest” cases, where all 
Other techniques failed.
• Essentially only one case left, reflected by the
Boolean Hypercube!! (?)



Plan for Today

2. Spectra of Graphs

3. Towards Refuting UGC on almost-all Graphs

1. Unique Games Conjecture(UGC)

4. Open Questions



Open Questions

Disprove the Unique Games Conjecture

• Can we argue about UGC on the cube?
•About 2 years ago a group of Quantum Computing Theorists 
came together and tried to find a quantum algorithm…
•Proved Maximal Inequality on the Cube, failed for UGC. 
•What is the quantum complexity of UGC? 



THANK YOU!


