
Computational
Complexity

Lecture 0

Introduction

Alexandra Kolla

Welcome to CSCI-7000-005

Administrative stuff

� Prerequisites: CSCI 2824 or equivalent,CSCI
3104/5454 or equivalent, familiarity with the
notion of algorithm, running time, reduction,
turing machine, basic notions of discrete math
and probability.

� Course Website: link through my page
http://home.cs.colorado.edu/~alko5368/

� Recommended reading: Arora-Barak
“Computational Complexity: A Modern
Approach”.

� Office hours: Wedensdays 4-5 pm .
� Homeworks: ~6 homework sets(70%), final/final

project(30%).

Today

� What is Computational Complexity all
about and why do we care?

� Some examples of problems Complexity
is interested in.

� Theoretical Applications J
� Course plan.

What is Complexity Theory?

� It is to computer science what theoretical
physics is to electronics.

� Problems to be solved, algorithms to
solve them: how much resources do they
need? (time, storage space, randomness)

6

Complexity Theory

Classify problems according to the
computational resources required
◦ running time
◦ storage space
◦ parallelism
◦ randomness
◦ rounds of interaction, communication, others…

Attempt to answer: what is computationally
feasible with limited resources?

7

Complexity Theory

� Contrast with decidability: What is
computable?
◦ answer: some things are not

� We care about resources!
◦ leads to many more subtle questions
◦ fundamental open problems

8

The central questions

� Is finding a solution as easy as recognizing one?
P = NP?

� Is every efficient sequential algorithm parallelizable?
P = NC?

� Can every efficient algorithm be converted into one that uses
a tiny amount of memory?

P = L?
� Are there small Boolean circuits for all problems that require

exponential running time?
EXP in P/poly?

� Can every efficient randomized algorithm be converted into a
deterministic algorithm one?

P = BPP?

9

Central Questions
We think we know the answers to all of
these questions …

… but no one has been able to prove
that even a small part of this “world-view”
is correct.

If we’re wrong on any one of these then
computer science will change dramatically

An (incomplete) overview

� Computational Complexity studies
◦ Impossibility results (lower bounds). Eventually

would like to prove the major conjectured lower
bound P≠ NP, which would imply that thousands
of natural combinatorial problems don’t admit
efficient algorithms.
◦ Relations between the power of different

computational resources (time, memory,
randomness, communication) and the
difficulties of different modes of computation
(exact vs. approximate, worst case vs. average
case…). Eg. would like to prove the conjecture
P=BPP.

An (incomplete) overview

� Ultimately, we would like complexity theory
to not only answer asymptotic worst-case
questions (like P vs. NP) but also address the
average and worst-case complexity of finite-
sized instances, e.g.

◦ The smallest boolean circuit that solves 3SAT on
formulas with 300 variables has size more than
2"#
◦ The smallest boolean circuit that can factor more

than half of the 2000-digit integers, has size
more than 2$#

If all of that happens…
� Develop unconditionally secure

cryptosystems
� Understand what makes certain instances

harder than others, develop more efficient
algorithms

� Provide the mathematical language to talk
about not only computations performed by
computers, but also the behavior of discrete
systems that evolve according to well-
defined laws. (working of the cell, the brain,
natural evolution, economic systems…)

Till then…

� Complexity theorists have had some
success in proving lower bounds for
restricted models of computation

� Some of the most interesting results in
complexity theory regard connections
between seemingly unrelated questions,
yielding “unification” of the field

� We will see some of that next

Connections and Unifications

� Unconditional lower bounds have only
been proven against restricted classes of
algorithms or problems of very high
complexity

� Most work in complexity theory is about
connections between questions

Connections and Unifications

Examples are:

� NP-completeness: We don’t know the
complexity of NP complete problems,
but we know it is the same for all.

� One-way functions: If they exist, then
also secure signature schemes, secure
authentication schemes, secure
encryption schemes exist.

Connections and Unifications
� Probabilistically checkable proofs:

characterization of NP that helps prove
hardness of approximation.

� Derandomization: ideally would like to show
that every randomized algorithm can be
simulated deterministically. Can turn
hardness assumption into algorithm.

� Worst case vs. average case: for certain
problems can turn worst-case hardness into
seemingly stronger (but in fact equivalent)
average-case hardness.

Complexity Classes

Complexity Zoo!

Course plan

� The basics: look at the models in complexity theory, consider
deterministic, non-deterministic, randomized, non-uniform and
memory-bounded algorithms and the known relations between them.
(about 4 weeks)

� Interactive proofs, IP=PSCPACE. (about 2 weeks)
� Expanders, Reingold’s algorithm. (about 2 weeks).
� Derandomization, Pseudorandomness and

Average-Case Complexity. (about 2 weeks)
� Unique Games Conjecture, PCP theorem…

(tentative).
� Quantum Complexity Theory. (1-2 weeks)

