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Representing Graphs 

V: n nodes
E: m edges

G = {V,E}

Obviously, we can represent a graph
with an nxn  matrix
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Representing Graphs 

V: n nodes
E: m edges

G = {V,E}
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What is not so obvious, is that 
once we have matrix representation

view graph as linear operator

xAx µ=

nnA Â®Â:• Can be used to multiply vectors. 
• Vectors that don’t rotate but just 
scale = eigenvectors.
• Scaling factor= eigenvalue

Amazing how this point of view
gives information about graph

Obviously, we can represent a graph
with an nxn  matrix



“Listen” to the Graph

List of eigenvalues
{µ1³ µ 2 ³…³ µ n }:graph SPECTRUM
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Eigenvalues reveal global graph properties
not apparent from edge structure
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A drum:

Hear shape of the drum
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“Listen” to the Graph

List of eigenvalues
{µ1³ µ 2 ³…³ µ n }:graph SPECTRUM
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i j

Eigenvalues reveal global graph properties
not apparent from edge structure

Adjacency matrix
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A =

If graph was a drum, 
spectrum would be its sound



Eigenvectors are Functions on Graph

vAv µ=Â®ÂÎ Vvv n :,

=)(iv value at node i
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Eigenvectors are Functions on Graph

V: 2n nodes

Kn Kn

“Coloring” 

vAv µ=Â®ÂÎ Vvv n :,

=)(iv value at node i different shade of grey



So, let’s See the Eigenvectors
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The second eigenvector
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Third Eigenvector
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Fourth Eigenvector
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Cuts and Algebraic Connectivity

2/||,
||
)',()',( nS

S
SSESScut £=

Cuts in a graph:

Graph not well-connected when “easily” cut in two pieces
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Graph not well-connected when “easily” cut in two pieces

S S’
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Edge-expansion:

Would like to know Sparsest Cut but NP 
hard to find

How does algebraic connectivity relate to standard connectivity?

Theorem(Cheeger-Alon-Milman): 22 max2)( ll dGh ££

Cuts and eigenvalues



Today

� More on evectors and evalues.
� Evalues of d-regular graphs.
� Relation between eigenvalues and 

expansion (Cheeger, part 1).



A Remark on Notation

For convenience, we will often use the bra-ket
notation for vecotrs:

� We denote vector ! =
!#
…
!%

with a “bra”: |!⟩

� We denote the transpose vector !( =
!# … !% with a “ket”: ⟨!|

� We denote the inner product !(*	 between two 
vectors v and u with a “braket”: ! * = ⟨!, *⟩



Evectors and Evalues
� Vector v is evector of matrix M with evalue λ if  Mv=λv.                                
� We are interested (almost always) in symmetric 

matrices, for which the following special properties 
hold:

◦ If v1,v2 are evectors of A with evalues λ1, λ2 and λ1≠ 
λ2, then v1 is orthogonal to v2.  (Proof)

◦ If v1,v2 are evectors of A with the same evalue λ, 
then v1+v2 is as well. The multiplicity of evalue λ is 
the dimension of the space of evectors with evalue λ.
◦ Can assume that eigenvectors have unit length, since 

every multiple of an eigenvector is also an 
eigenvector.



Evectors and Evalues
◦ Generally, !" = $" ⇒ ! − $' " = 0 ⇒ det(! −
$') = 0.
◦ The determinant is an n-degree polynomial and has n 

roots, counting multiplicities.
◦ Every n-by-n symmetric matrix has n evalues

λ0 ≤ ⋯ ≤ λ3 	counting multiplicities, and and 
orthonormal basis of corresponding evectors
"0, … , "3 , so that  M"8 = λ8"8

◦ If we let V be the matrix whose i-th column is "8, and 
D the diagonal matrix whose i-th diagonal is λ8, we 
can compactly write MV=VD. Multiplying by 9:	on 
the right, we obtain the eigendecomposition of M:

! = !9 9:	=VD 9:	=∑ λ8"8" 8
:

8



Some eigenvalue theorems

� Theorem 1. Let ! ∈ #$×$ symmetric. 
Then &' = max

,∈-.,||,||1'
23!2 , where 

23!2 = ∑ 2 5 2 6 !(5, 6)9,: .

� Similarly, &; = max
,∈-.,||,||1',,<,=

23!2
� max{|&;|, … , &$ } = max

,∈-.,||,||1'
|23!2|



Some eigenvalue theorems

� Theorem 2. Let ! be a d-regular graph 
and M its adjacency matrix. Let 
"#, "%, … , "' be its eigenvalues and 
(#, (%, … , (' the corresponding 
eigenvectors. Then "# = *. Moreover, 
(# = 1,… , 1 .



Eigenvalues and connectivity
� Theorem 2’. Let ! be a d-regular graph 

and M its adjacency matrix. Let 
"#, "%, … , "' be its eigenvalues and 
(#, (%, … , (' the corresponding 
eigenvectors. Then "# = *. If "% = * then 
the graph is disconnected. The converse 
is also true (ex). Alternatively, h(G)= 0 iff
"% = * .

� Generally, the more connected the graph 
is, the smaller "% is.



Eigenvalues and expansion
◦ Cheeger’s Inequality:

! − #$
2 ≤ ℎ ( ≤ !(! − #$)

◦ Both upper and lower bounds are tight (up to 
constant), as seen by path graph and complete 
binary tree. 


