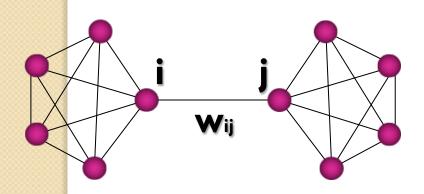
Computational Complexity. Lecture 11

Expansion and Eigenvalues

Alexandra Kolla

Representing Graphs



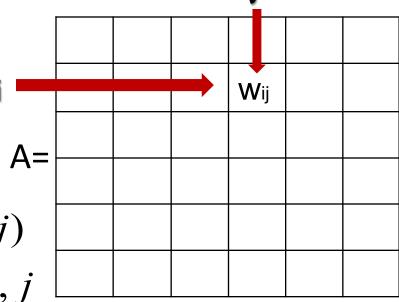
 $G = \{V, E\}$

V: n nodes

E: m edges

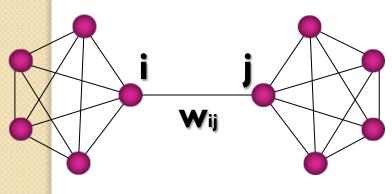
Obviously, we can represent a graph with an nxn matrix

Adjacency matrix



 $A_{ij} = \begin{cases} w_{ij} & weight of edge(i, j) \\ 0 & if no edge between i, j \end{cases}$

Representing Graphs



Obviously, we can represent a graph with an nxn matrix

What is not so obvious, is that once we have matrix representation view graph as linear operator

V: n nodes E: m edges $G = \{V, E\}$

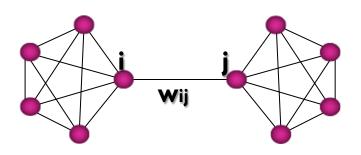
Can be used to multiply vectors.

$$A:\mathfrak{R}^n\to\mathfrak{R}^n$$

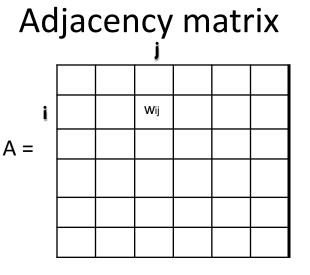
- Vectors that don't rotate but just ulletscale = eigenvectors.
- Scaling factor= eigenvalue

$$Ax = \mu x$$

Amazing how this point of view gives information about graph



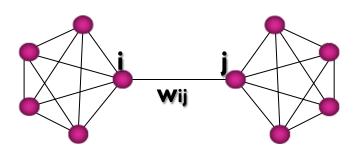
List of eigenvalues $\mu 2 \ge ... \ge \mu n$ graph SPECTRUM



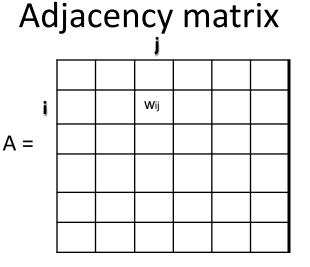
Eigenvalues reveal global graph properties not apparent from edge structure

A drum:

Hear shape of the drum



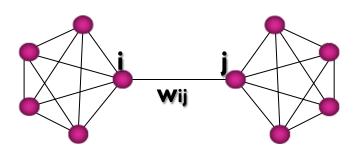
List of eigenvalues $\mu 2 \ge ... \ge \mu n$ graph SPECTRUM



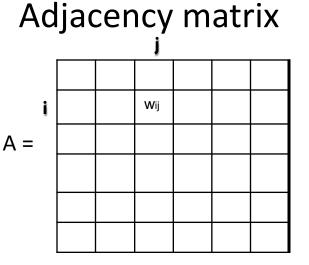
Eigenvalues reveal global graph properties not apparent from edge structure

Hear shape of the drum

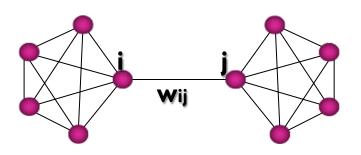
Its sound:



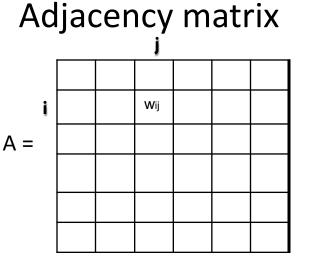
List of eigenvalues $\mu 2 \ge ... \ge \mu n$ graph SPECTRUM



Eigenvalues reveal global graph properties not apparent from edge structure

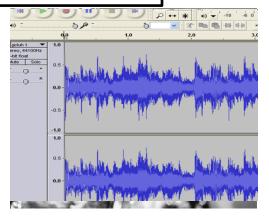


List of eigenvalues $\mu 2 \ge ... \ge \mu n$ graph SPECTRUM

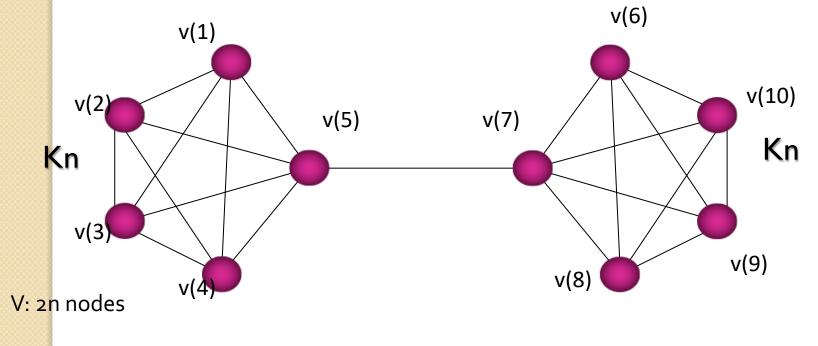


Eigenvalues reveal global graph properties not apparent from edge structure

If graph was a drum, spectrum would be its sound

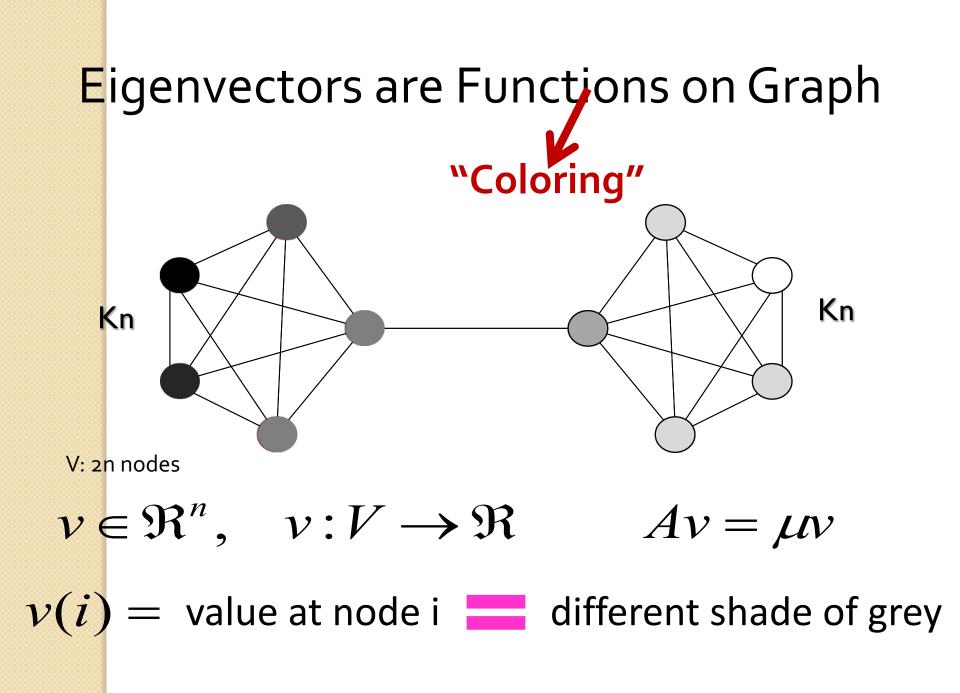


Eigenvectors are Functions on Graph



 $v \in \mathfrak{R}^n, \quad v: V \to \mathfrak{R} \qquad Av = \mu v$

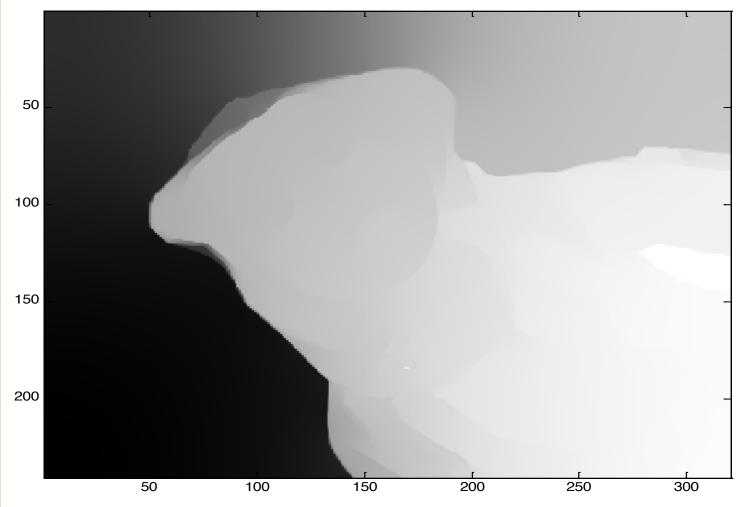
v(i) = value at node i



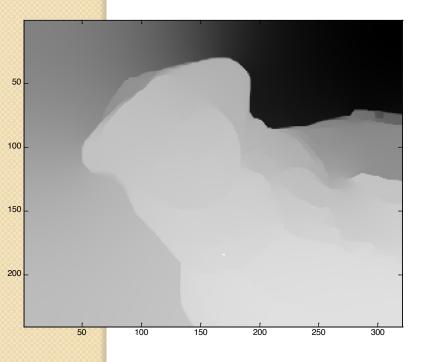
So, let's See the Eigenvectors

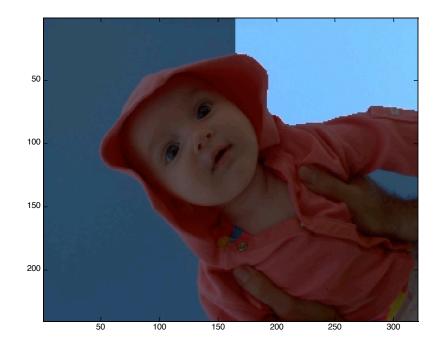
* Slides from Dan Spielman

The second eigenvector

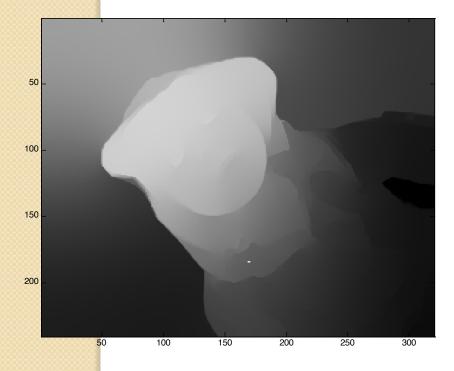


Third Eigenvector

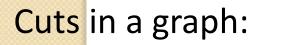




Fourth Eigenvector



Cuts and Algebraic Connectivity

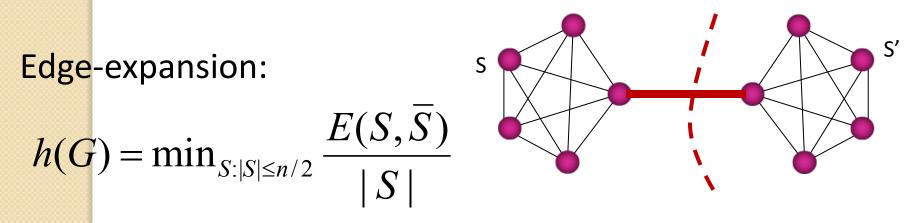


$$cut(S, S') = \frac{E(S, S')}{|S|}, |S| \le n/2$$

S

Graph not well-connected when "easily" cut in two pieces

Cuts and eigenvalues



Graph not well-connected when "easily" cut in two pieces

Would like to know Sparsest Cut but NP hard to find

How does algebraic connectivity relate to standard connectivity?

Theorem(Cheeger-Alon-Milman): $\lambda_2 \leq h(G) \leq \sqrt{2d_{\text{max}}} \sqrt{\lambda_2}$

Today

- More on evectors and evalues.
- Evalues of d-regular graphs.
- Relation between eigenvalues and expansion (Cheeger, part 1).

A Remark on Notation

For convenience, we will often use the bra-ket notation for vecotrs:

• We denote vector $v = \begin{pmatrix} v_1 \\ \cdots \\ v_n \end{pmatrix}$ with a "bra": $|v\rangle$

- We denote the transpose vector $v^T = (v_1 \dots v_n)$ with a "ket": $\langle v |$
- We denote the inner product $v^T u$ between two vectors v and u with a "braket": $\langle v | u \rangle = \langle v, u \rangle$

Evectors and Evalues

- Vector v is evector of matrix M with evalue λ if Mv= λ v.
- We are interested (almost always) in symmetric matrices, for which the following special properties hold:
 - If v1,v2 are evectors of A with evalues λ_1 , λ_2 and $\lambda_1 \neq \lambda_2$, then v1 is orthogonal to v2. (Proof)
 - If v1,v2 are evectors of A with the same evalue λ, then v1+v2 is as well. The multiplicity of evalue λ is the dimension of the space of evectors with evalue λ.
 - Can assume that eigenvectors have unit length, since every multiple of an eigenvector is also an eigenvector.

Evectors and Evalues

- Generally, $Mv = \lambda v \Rightarrow (M \lambda I)v = 0 \Rightarrow \det(M \lambda I) = 0$.
- The determinant is an n-degree polynomial and has n roots, counting multiplicities.
- Every n-by-n symmetric matrix has n evalues $\{\lambda_1 \leq \cdots \leq \lambda_n\}$ counting multiplicities, and and orthonormal basis of corresponding evectors $\{v_1, \dots, v_n\}$, so that $Mv_i = \lambda_i v_i$
- If we let V be the matrix whose i-th column is v_i , and D the diagonal matrix whose i-th diagonal is λ_i , we can compactly write MV=VD. Multiplying by V^T on the right, we obtain the eigendecomposition of M: $M = MV V^T = VD V^T = \sum_i \lambda_i v_i v_i^T$

Some eigenvalue theorems

- **Theorem 1**. Let $M \in R^{n \times n}$ symmetric. Then $\lambda_1 = \max_{x \in R^n, ||x||=1} \{x^T M x\}$, where $x^T M x = \sum_{i,j} x(i) x(j) M(i,j)$.
- Similarly, $\lambda_2 = \max_{x \in \mathbb{R}^n, ||x||=1, x \perp x_1} \{x^T M x\}$ • $\max\{|\lambda_2|, \dots, |\lambda_n|\} = \max_{x \in \mathbb{R}^n, ||x||=1} \{|x^T M x|\}$

Some eigenvalue theorems

• Theorem 2. Let G be a d-regular graph and M its adjacency matrix. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be its eigenvalues and x_1, x_2, \dots, x_n the corresponding eigenvectors. Then $\lambda_1 = d$. Moreover, $x_1 = (1, \dots, 1)$.

Eigenvalues and connectivity

- **Theorem 2'**. Let G be a d-regular graph and M its adjacency matrix. Let $\lambda_1, \lambda_2, \dots, \lambda_n$ be its eigenvalues and x_1, x_2, \dots, x_n the corresponding eigenvectors. Then $\lambda_1 = d$. If $\lambda_2 = d$ then the graph is disconnected. The converse is also true (ex). Alternatively, h(G) = 0 iff $\lambda_2 = d$.
- Generally, the more connected the graph is, the smaller λ_2 is.

Eigenvalues and expansion Cheeger's Inequality:

$$\frac{d-\lambda_2}{2} \le h(G) \le \sqrt{d(d-\lambda_2)}$$

 Both upper and lower bounds are tight (up to constant), as seen by path graph and complete binary tree.