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Representing Graphs

Obviously, we can represent a graph
with an nxn matrix

I j
Wi Adjacency ma}:rix
V: n nodes G ={V,E} l

| IE— Wi

E: m edges

A=

ij

w,  weight of edge (i, j)
0 if noedgebetween i, j




Representing Graphs

Obviously, we can represent a graph
with an nxn matrix

i
Wij
What is not so obvious, is that
once we have matrix representation
Vinnodes G~ {E) view graph as linear operator
E: m edges grap P

* Canbeusedtomultiply vectors. 4 - SR 5 SR
* Vectors that don't rotate but just

scale = eigenvectors.
* Scaling factor=eigenvalue

Ax = LIX Amazing how this point of view
gives information about graph



"Listen” to the Graph

Adjacency matrix
j

i Wij

List of eigenvalues

fur>pn2>..>2unt:graph SPECTRUM

Eigenvalues reveal global graph properties
not apparent from edge structure

A drum:

Hear shape of the drum
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"Listen” to the Graph

Adjacency matrix
j

i Wij

List of eigenvalues
fur>pn2>..>2unt:graph SPECTRUM

Eigenvalues reveal global graph properties
not apparent from edge structure
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[ Hear shape of the drum ]

Its sound
(eigenfrequenies):




"Listen” to the Graph

Adjacency matrix
j

i Wij

List of eigenvalues
fur>pn2>..>2unt:graph SPECTRUM

Eigenvalues reveal global graph properties
not apparent from edge structure

k )
ISy = o) ~ A | B | 6 |- -
1.0 2.0 3.

r N =gl
If graph was a drum, &

spectrum would be its sound
\ J




Eigenvectors are Functions on Graph

v(1) v(6)

v(2 v(10)

v(5) v(7)
Kn Kn

v(3

v(9)

V( V(8)

V: 2n nodes

veR", vV >R Av = v

v(i) = value at node |



Eigenvectors are Funcjons on Graph

“Coloring”

Kn

V: 2n nodes

veR", v:I—>R Av = uv

v(i) = valueatnodei === different shade of grey



So, let’s See the Eigenvectors

100 |- -

200 |-

300 |-

400 |-

500 |-

600 |-

700 |-

800 |-

900 |-

* Slides from Dan Spielman



The second eigenvector
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Third Eigenvector

50

100

150

200

* Slides from Dan Spielman



Fourth Eigenvector
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* Slides from Dan Spielman



Cuts and Algebraic Connectivity

Cuts in a graph: >

E(S,S")
N

cut(S,S') = JSIEn/2

Graph not well-connected when “easily” cut in two pieces



Cuts and eigenvalues

Edge-expansion:

E(S,S)
N

hG) = minS:|S|Sn/2

Graph not well-connected when “easily” cut in two pieces

[ Would like to know Sparsest Cut but NP J

hard to find
How does algebraic connectivity relate to standard connectivity?

Theorem(cheeger-Alon-Milman): 2,2 < h(G) < \/2dmax \/}Lz



Today

e More on evectors and evalues.
 Evalues of d-regular graphs.

 Relation between eigenvalues and
expansion (Cheeger, part 1).



A Remark on Notation

For convenience, we will often use the bra-ket
notation for vecotrs:
V1
* We denote vectorv = ( ) with a “bra”: |v)
Un
» We denote the transpose vector v! =
(V1 - Vn) with a “ket”: (v]

» We denote the inner product v'u between two
vectors v and u with a “braket”: {(v|u) = (v, u)



Evectors and Evalues

e Vectorvis evector of matrix M with evalue A if Mv=Av.

* We are interested (almost always) in symmetric

matrices, for which the following special properties
hold:

o If va,v2 are evectors of A with evalues A1, A2 and A1z
A2, then viis orthogonal to v2. (Proof)

o If va,v2 are evectors of A with the same evalue A,
then vi+v2is as well. The multiplicity of evalue Ais
the dimension of the space of evectors with evalue A.

> Can assume that eigenvectors have unit length, since
every multiple of an eigenvector is also an
eigenvector.



Evectors and Evalues

> Generally Mv =Av = (M — A)v = 0 = det(M —
Al) = 0.

> The determinant is an n-degree polynomial and has n
roots, counting multiplicities.

> Every n-by-n symmetric matrix has n evalues
(A, < - <A} counting multiplicities, and and
orthonormal basis of corresponding evectors
{vy, ..., 1.}, so that My; = A;v;

o If we letV be the matrix whose i-th column is v;, and
D the diagonal matrix whose i-th diagonal is A;, we
can compactly write MV=VD. Multiplying by VT on
the right, we obtain the eigendecomposition of M:

M=MVVT=vDVT =3, \vv"



Some eigenvalue theorems

» Theorem1. Let M € R™" symmetric.

ThenA;, = max {x"Mx}, where
XERM,||x]||=1

x"Mx =%, i x(Dx(HM, j).

o . . — T
Similarly, 1, xERn,||Iprcl|?§1,xlx1{x Mx}
e max{|A;|, ... [A4]} = max {|x"Mx|}

XERM ||x||=1



Some eigenvalue theorems

» Theorem 2. Let G be a d-regular graph
and M its adjacency matrix. Let
A, Ao, o, Ay beits eigenvalues and
X1, X, ..., Xy, the corresponding
eigenvectors. Then A; = d. Moreover,
xq1 =(1,..,1).



Eigenvalues and connectivity

» Theorem 2’. Let G be a d-regular graph
and M its adjacency matrix. Let
A, Aoy, ., Ay beits eigenvalues and
X1, X, ..., Xy, the corresponding
eigenvectors.Then A; = d.If A, = d then
the graph is disconnected. The converse
is also true (ex). Alternatively, h(G)= 0 iff
Ay =d.

» Generally, the more connected the graph
is, the smaller 4, is.



Eigenvalues and expansion
> Cheeger’s Inequality:

d— 1,
2

< h(G) < d(d—21y)

> Both upper and lower bounds are tight (up to
constant), as seen by path graph and complete
binary tree.



