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Today

* Random walks on graphs review.

» Matrix form of random walks, lazy
random walk.

e The stable distribution.
» Convergence and the second eigenvalue.

 Random walks on expanders.
* ST-UCONN in RL.



Random Walks on Graphs

* G=(V,E,w) weighted undirected graph.
 Random walk on G starts on some vertex
and moves to a neighbor with prob.

proportional to the weight of the
corresponding edge.

» We are interested in the probability
distribution over vertices after a certain
number of steps.



Random Walks on Graphs

* G=(V,E,w) weighted undirected graph.
 Let vector p; € R™ denote the
probability distribution at time t. We will

also write p, € RV, and p,(u) for the
value at vertex u.

» Since it's a probability vector, p;(u) = 0
and ), p;(u) = 1 foreveryt.
» Usually, we start our walk at one vertex,

so po(u) = 1 for some vertex u and o for
the rest.



Random Walks on Graphs

» To derive p; from p,,, note that the
probability of being at node u at time t+1 is
the sum over all neighbors v of u of the
probability that the walk was onv attime t
times the probability it moved from vto uin

one step:

(w,v)
Pry1(U) = Zv:(u,v)EE M;W pe(v)

Where d(v)=),, w(u, v) is the weighted
degree of v.



Lazy Random Walks

» We will often consider lazy random walks,
which are a variant where we stay put with
probability %2 at each time step, and walk to
a random neighbor the other half of the
time.

1 1 |
praaa) = gpe +3 Y P

v:(U,v)EE

pe(V)

» Lazy random walks closely related to
diffusion processes (at each time step, some
substances diffuses out of each vertex)



Normalized Adjacency Matrix

e Need to define normalized version of
Adjacency matrix.

* Normalized Adjacency matrix is what you
would expect:

MG — DG_l/ZAGDG_l/Z
With eigenvalues 1 = uy =2 u, = - = u,
and first eigenvector Vd.



Normalized Adjacency Matrix

» We care about d-reqular graphs.

* Normalized Adjacency matrix is what you
would expect:

1
MG — EAG

With eigenvalves 1 =y =2y, = - = u,

and first eigenvector 1.



Matrix Form of Random Walk

* Best way to understand random walks is
with linear algebra. Equation

w(u,v)

1 1
Pey1(U) = Ept(u) T EZU;(W)EE p:(v)

Is equivalent to (verify)
1 1
Per1 = ;U +-4) py
The lazy r.w. matrix is:

1
~4¢)

1 1
W-.=—=—(I+M) =—=(I
G 2("‘) 2(+d



Why Lazy Random Walks?

1 1 1
s W =>(I+M) = +-A4c)

o All evals of W are between 1 and o:
Perron evalue of M is 1, so M has evalues
between 1 and -1.

eWeletl=w; 2w, =2-=2w, =0

e Wherew; = 1/2(1 4+ u;)=1/2(1 +
Ai/d)



The Stable Distribution

1 1 1
We =5 +M) =5 +-4c)

» Regardless of starting distribution, lazy
r.w. always converges to stable
distribution.

* In stable distribution, every vertex is
visited with probability proportional to its
(weighted) degree.

() = ) __ 1

Zjd(j)_n




The Stable Distribution

* Tt is right evector of W with evalue 1.

» Other reason to consider lazy walks, is
that they always converge. (e.g. consider
bipartite graphs)

* Distribution converges to . (Proof)



Rate of Convergeance

 Rate of convergence to the stable
distribution is dictated by the second
eigenvalue of W.

» Assume that r.w. starts at some vertex a.
Let x,the characteristic vector of a,
which is our starting distribution. For

every vertex b, we will bound how far
p¢(b) can be from m(b).



Rate of Convergeance
* Assume that r.w. starts at some vertex a.
Let x,the characteristic vector of 3,
which is our starting distribution. For
every vertex b, we will bound how far

p:(b) can be from 1t (b):

» Theorem. Forall a,b, if py = x, then
[pe(b) — (b)| < w,*



How Many Steps to Converge?

» To have |p;(b) — m(b)| < €, we needt
to be such that w,! < ¢.

* Define w, = 1 —y, where y is the
spectral gap between first and second
eigenvalue(remember discussion about
expansion and large spectral gap).

* Number of steps to convergeance
dependsoni/y,usel —y <e7Y.



Mixing time for graphs

* Let’s go back to thinking of non-lazy r.w.
on d-reqular, connected, non-bipartite
graphs.

e It follows that |p;(b) — m(b)| < %when

N logn) logn .. :
t =~ O( y )- O (1_%2) (mixing time)

» For expanders, y = )(1).Set A = %2.



Mixing time for graphs

1

e Forany graph, weshow1 —A =y > =

e Use fact (O;lvi)?< n X, vf

» Therefore, mixing time is O(dn? logn).



ST-UCONN and symmetric non-
deterministic machines

» Undirected s,t, connectivity ST-UCONN:
we are given undirected graph and the
question is if there is path from s to t.

* Not known to be complete for NL,
probably not, but complete for class SL
(symmetric, non-deterministic TM with
O(log n) space).



From previous lectures

e L €SL € RL € NL.

* Reingold ‘o4 showed in a breakthrough
result that L=SL.

* We will see that ST-UCONN in RL in this
lecture. (Aleliunas, Karp, Lipton, Lov asz,
Rackoff)

 Later on we will see Reingold’s theorem.



