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» Coordinate systems
* Projections
e Gram-Schmidt re-explained



Unique Representation

The Unique Representation Theorem

Let B = {by,...,b,} be abasis for a vector space V. Then for each x in V', there
exists a unique set of scalars ¢y, . . ., ¢p such that

x=cb +---+¢,b, (D)



Coordinate Systems

Suppose B = {by,....b,} is a basis for V' and x is in V. The coordinates of x
relative to the basis B (or the B-coordinates of x) are the weights ¢y, . .., ¢, such
thatx = ¢;by +---+ ¢,b,,.



Coordinate Systems
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Dimension of Vector Space review

If a vector space V has a basis B = {by, ..., b,}, then any set in V' containing
more than n vectors must be linearly dependent.

If a vector space V has a basis of n vectors, then every basis of V' must consist of
exactly n vectors.

If V is spanned by a finite set, then V' is said to be finite-dimensional, and the
dimension of V', written as dim V', 1s the number of vectors in a basis for V. The
dimension of the zero vector space {0} is defined to be zero. If V' is not spanned
by a finite set, then V' is said to be infinite-dimensional.



Dimension of Vector Space review

Let H be a subspace of a finite-dimensional vector space V. Any linearly
independent set in H can be expanded, if necessary, to a basis for H. Also, H is
finite-dimensional and

dimH <dmV

The Basis Theorem

Let V be a p-dimensional vector space, p > 1. Any linearly independent set of
exactly p elements in V' is automatically a basis for V. Any set of exactly p
elements that spans V' is automatically a basis for V.



Dimension of Vector Space review

Find the dimension of the subspace H of R? spanned by
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Dimension of Vector Space review

True or False!?

a. If there exists a set {vy,..., v, that spans V', then
dimV < p.
b. If there exists a linearly independent set {v,, ..., V,} In

V,thendimV > p.

c. If dim V' = p, then there exists a spanning set of p + 1
vectors in V.



Dimension of Vector Space review

True or False!?

a. If there exists a linearly dependent set {vy,..., Vypin 'V,
thendim V < p.

b. If every set of p elements in V fails to span V', then
dimV > p.

c. If p>2anddimV = p,then every setof p — 1 nonzero
vectors is linearly independent.



Orthogonality, Inner Product, norm,
and distance review



Orthogonal Complements
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Orthogonal Complements )
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1. A vector x is in W+ if and only if x is orthogonal to every vector in a set that
spans W.

2. W+ is a subspace of R”.



Orthogonality

Show that if x is in both W and W, then x = 0.
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Orthogonality

True or False!?

a. vev=|lv|2. T

b. For any scalar ¢, u- (¢v) = c(u-v). T

If the distance from u to v equals the distance from u to
—v, then u and v are orthogonal N _ 2 §
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Orthogonality

True or False?

If vectors vy,..., Vv, span a subspace W and if x is
orthogonal to each v, for j = 1,..., p,thenxisin W,



Orthogonal sets
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Orthogonal sets

If §$={uy,...,u,} is an orthogonal set of nonzero vectors in R", then § is
linearly independent and hence is a basis for the subspace spanned by S
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Orthogonal sets

Let {uy, ..., u,} be an orthogonal basis for a subspace W of R". For eachy in W,
the weights in the linear combination

y=cu +"'+CpuP

are given by
y-u;
u;-u;

Cj=



Orthogonal Projections
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Orthogonal Projections




Orthogonal Projections

_¥, = projection onto u,

_ ¥, = projection onto u,



