

CSCI 2820

Lecture 11

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu ECES 122

Today

- Coordinate systems
- Projections
- Gram-Schmidt re-explained

Unique Representation

The Unique Representation Theorem

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n \tag{1}$$

Coordinate Systems

DEFINITION

Suppose $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis for V and \mathbf{x} is in V. The **coordinates of \mathbf{x}** relative to the basis \mathcal{B} (or the \mathcal{B} -coordinates of \mathbf{x}) are the weights c_1, \dots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$.

eg!
$$\vec{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix} = 1.\vec{e}_1 + 6.\vec{e}_2$$
 "standard basis"

eg! $\vec{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix} = 1.\vec{e}_1 + 6.\vec{e}_2$ "standard basis"

$$\vec{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$$

Coordinate Systems

FIGURE 1 Standard graph paper.

FIGURE 2 \mathcal{B} -graph paper.

If a vector space V has a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, then any set in V containing more than n vectors must be linearly dependent.

If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.

If V is spanned by a finite set, then V is said to be **finite-dimensional**, and the **dimension** of V, written as $\dim V$, is the number of vectors in a basis for V. The dimension of the zero vector space $\{0\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be **infinite-dimensional**.

Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and

 $\dim H \leq \dim V$

The Basis Theorem

Let V be a p-dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

Find the dimension of the subspace H of \mathbb{R}^2 spanned by

$$\begin{bmatrix} 2 \\ -5 \end{bmatrix}, \begin{bmatrix} -4 \\ 10 \end{bmatrix}, \begin{bmatrix} -3 \\ 6 \end{bmatrix}$$

$$\overrightarrow{x}_{1} = -2 \cdot \overrightarrow{x}_{1}$$

$$\begin{bmatrix} 2 \\ -5 \end{bmatrix}, \begin{bmatrix} -4 \\ 10 \end{bmatrix}, \begin{bmatrix} -3 \\ 6 \end{bmatrix}.$$

$$\begin{cases} x_1, x_3 \\ x_2 \end{cases} \text{ busis for } 1 \\ \text{einearly indep} \end{cases}$$

$$\begin{cases} x_1 \\ x_2 \\ x_3 \end{cases} = -2 \cdot x_1$$

$$\begin{cases} x_1 \\ x_2 \\ x_3 \end{cases}$$

$$\begin{cases} x_1 \\ x_3 \\ x_4 \end{cases} = -2 \cdot x_1$$

True or False?

- a. If there exists a set $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ that spans V, then
- b. If there exists a linearly independent set $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ in V, then $\dim V \geq p$. Then there exists the exists V is the set of V and V is the exists V in V in
- c. If dim V = p, then there exists a spanning set of p + 1vectors in V.7 $V=1/2^3$ span $\{\vec{e}_1,\vec{e}_2,\vec{e}_3,\vec{e}_1+5\vec{e}_2+3\vec{e}_3\}=1/2^3$ $\dim(V)=3$ span $\{\vec{e}_1,\vec{e}_2,\vec{e}_3,\vec{e}_1+5\vec{e}_2+3\vec{e}_3\}=1/2^3$ vectors in V. 7

ic dim v= P+2 then "c" would be F

True or False?

- a. If there exists a linearly dependent set $\{v_1, \dots, v_p\}$ in V, then dim $V \le p$. $V = \mathbb{R}^3 \setminus \{\vec{e_1}, \vec{z_0}, \vec{f_2}\} = 2$ but dim V = 3
- b. If every set of p elements in V fails to span V, then $\dim V > p$.
- \neq c. If $p \ge 2$ and dim V = p, then every set of p 1 nonzero vectors is linearly independent.

