CSCI 5444: Introduction to
Theory of Computation

Lecture 01: Introduction

Alexandra Kolla(Alexandra.kolla@Colorado.edu)
Department of Computer Science, University of Colorado Boulder
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Instructor and Grading Assistant

o Alexandra Kolla (Alexandra.Kolla@colorado.edu)
o Charles Carlson (chca0914@colorado.edu )

Lectures

o Tuesday (11:30am —12:15am)
o Thursday (11:30am — 12:15am)

Office hours
o TBD
o By appointment

Venue
o Class: HUMN 1B90
o Office hours: ECCS 122




Logistics (Contd.)

* Requisite
o Discrete Structures (CSCI 2824) / Discrete Mathematics
o UG Algorithms (CSCI 3104)

e Textbook
o Michael Sipser. Introduction to the Theory of Computation, PWS Publishing Company.

e Other supplemental materials
o Automata and Computability , Dexter C. Kozen
O A(ij_ttqma)\ta Theory, Languages, and Computation , Hopcroft, Motwani, and Ullman (3rd
edition).
o Elements of the theory of computation , Lewis and Papadimitriou (2nd edition).
o Descriptive Complexity, Neil Immerman
o Elements of Finite Model Theory, Leonid Libkin
o Computational Complexity, Sanjeev Arora and Boaz Barak
o Online notes and readings distributed by instructor



https://link.springer.com/book/10.1007/978-1-4612-1844-9
https://www.amazon.com/Introduction-Automata-Theory-Languages-Computation/dp/0321455363
https://www.amazon.com/Elements-Theory-Computation-Harry-Lewis/dp/0132624788

Logistics (Contd.)

e /ZOOM
e Moodle

o All assignments will be posted on moodle.
o Your identikey is needed for signing in.



Logistics: Grading

® Quizzes ® Final Exam/Presentations
@ Class Participation ® Weekly Assignments




Theory of Computation



What are the fundamental capabilities and limitations of computers?









What are the fundamental capabilities and limitations of computation?
What do we mean by computation?

What is a problem?

Are all problems computable?

What is an “efficient” computation?

* Are some problems inherently more difficult than others?



What are the fundamental capabilities and limitations of computers?
 How do we model “computational machines”?
e Are all computational machines equally powerful?
 Why should we study computationally weaker models?

* Why a practically-oriented computer-programmer should learn theory of
computation?



Theory of Computation

Automata Theory

©)

Formalization of the notion of problems via formal
languages

Formalization of the notion of computation using "abstract
computing devices" called automata

Understanding a hierarchy of classes of problems or formal
languages (regular, context-free, context-sensitive, decidable,
and undecidable)

Understanding a hierarchy of classes of automata (finite
automata, pushdown automata, and Turing machines)
Understanding applications to pattern matching, parsing,
and programming languages

Computability Theory

Complexity Theory

® Automata Theory @ Computability Theory
Complexity Theory @ Special Topics




Theory of Computation

Automata Theory

Computability Theory

o Understanding Church-Turing thesis (Turing machines as a
notion of "general-purpose computers")

o Understanding the concept of reduction, i.e., solving a
problem using a solution (abstract device) for a different
problem

o Understanding the concept of undecidability , i.e., when a
problem can not be solved using computers

Complexity Theory

® Automata Theory = @ Computability Theory
@ Complexity Theory @ Special Topics




Theory of Computation

Automata Theory

Computability Theory ® Automata Theory @ Computability Theory
@ Complexity Theory @ Special Topics

Complexity Theory

o Complexity classes : how to classify decidable problems
based on their time and space requirements
Complexity classes P and NP
When a problem is called intractable (NP-completeness)
Using reductions to prove problems intractable
Space-complexity classes L and NL, PSPACE, and so on

O O O O




Theory of Computation: (Rough) Schedule

e Week 1 — Week 5 : Automata Theory (In-Class Quiz I)

* Week 6 — Week 10: Computability Theory (In-Class Quiz Il)
 Week 11 — Week 15: Complexity Theory (In-Class Quiz Ill)
* Week 15 — Week 16: Special Topics




Special Topics

* Randomized Computation and Complexity
* Quantum Computation and Complexity

* Approximate Computation and Complexity
 Historical paper review

e Other? (suggestions welcome)



Discrete Mathematics: Review



Discrete Mathematics: Review

* Asetis a collection of objects, e.g.
« A={a,b,c,d}and B = {b,d}
* Empty set @ = {} (why itis not same as {@})
- N={0,1,2,3,...}andZ =4{...,—2,-1,0,1,2, ...}
* QQis the set of rational numbers.
* Ris the set of real numbers.

* a € A:element of a set, belongs to, or contains
* Subset of A € N, or proper subset of A € N
* Notions of set union, intersection, difference, and disjoint

Georg Cantor
March 3, 1845 — January 6, 1918

 Power set 24 of a set A (example)
* Partition of a set



Discrete Mathematics: Review (Contd.)

* A ordered pair is a pair (a, b) of elements with natural order
 Similarly we define triplet, quadruplet, n-tuples, and so on

* Cartesian product AXB of two sets is the set of orderd pairs
AXB ={(a,b) :a€ Adand b € B}

* Binary relation R on two sets A and B is a subset of AXB

e Recall definitions of
» Reflexive, Symmetric, and Transitive relations,
* and Equivalence relation.



Discrete Mathematics: Review (Contd.)

* A function (or mapping) f from set A to B is a binary relation s.t. sfor
all a € A we have that (a,b) € f and (a,b") € f impliesthatbh = b'.

* We often write f(a) for the unique element b such that (a, b) € f.

* Function f: A — B is one-to-one if for any two distinct elements
a,b € A we have that f(a) # f(b).

* Function f: A — B is onto if for every element b € B there is an
element a € A such that f (a) = b.

* Function f: A — B is called bijection if it is both one-to-one and onto.



Cardinality of a Set

* Cardinality |S| of aset S, e.g. |A] = 4 and |N]| is an infinite
humber.

* Two sets have same cardinality if there is a bijection between them.

* A set is countably infinite (or denumerable) if it has same
cardinality as N.

* Asetis countable if it is either finite or countably infinite.
* A transfinite number is a cardinality of some infinite set.



Theorem: Cardinality

Theorem
1. The set of integers is countably infinite. (idea: interlacing)

2. The union of a finite number of countably infinite sets is countably infinite
as well. (idea: dove-tailing)

3. The union of a countably infinite number of countably infinite sets is
countably infinite.

4. The set of rational numbers is countably infinite.

5. The power set of the set of natural numbers has a greater cardinality than
itself. (idea: contradiction, diagonalization)



Cantor’s Theorem

Theorem. If a set S is of any infinite cardinality then its power set
25 has a greater cardinality, i.e. |2°| > | S |.

(hint: happy, sad sets).

Corollary. There is an infinite series of infinite cardinals.



Cantor’s Theorem

Theorem. There is an infinite series of infinite cardinals.

“a "grave disease" infecting the discipline of mathematics” —Henri Poincaré
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"I don't know what predominates in Cantor's theory — philosophy or theology, but | am sure
that there is no mathematics there"— Leopold Kronecker

“Most admirable flower of mathematical intellect” — David Hilbert



