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Discrete Mathematics: Review



Discrete Mathematics: Review

* Asetis a collection of objects, e.g.
« A={a,b,c,d}and B = {b,d}
* Empty set @ = {} (why itis not same as {@})
- N={0,1,2,3,...}andZ =4{...,—2,-1,0,1,2, ...}
* QQis the set of rational numbers.
* Ris the set of real numbers.

* a € A:element of a set, belongs to, or contains
* Subset of A € N, or proper subset of A € N
* Notions of set union, intersection, difference, and disjoint

Georg Cantor
March 3, 1845 — January 6, 1918

 Power set 24 of a set A (example)
* Partition of a set



Discrete Mathematics: Review (Contd.)

* A ordered pair is a pair (a, b) of elements with natural order
 Similarly we define triplet, quadruplet, n-tuples, and so on

* Cartesian product AXB of two sets is the set of orderd pairs
AXB ={(a,b) :a€ Adand b € B}

* Binary relation R on two sets A and B is a subset of AXB

e Recall definitions of
» Reflexive, Symmetric, and Transitive relations,
* and Equivalence relation.



Discrete Mathematics: Review (Contd.)

* A function f from set A to B, formally f: A = B, is a binary relation such
that foralla € A we have (a,b) € f and (a,b’) € f impliesthatb = b’

* Unless specified otherwise, we assume that the function f: A — B is a total
function, i.e. for alla € A thereisa b € Bsuchthat (a,b) € f.

* We often write f(a) for the unique element b such that (a, b) € f.

* Function f: A = B is one-to-one if for any two distinct elements a, b €
A we have that f(a) + f(b).

* Function f: A — B is onto if for every element b € B there is an element
a € A such that f(a) = b.

* Function f: A — B is called bijection if it is both one-to-one and onto.



Cardinality of a Set

* Cardinality |S| of a set S is a measure of “number of elements” in §
* Fortheset A ={a,b,c,d} we have |A|] = 4
 For the set N, its cardinality |N] is an infinite number X, (aleph-null).

* Two sets have same cardinality if there is a bijection between them.

* A set is countably infinite (or denumerable) if it has same
cardinality as N.

* Asetis countable if it is either finite or countably infinite.
* A transfinite number is a cardinality of some infinite set.



Theorem: Cardinality

Theorem
1. The set of integers is countably infinite. (idea: interlacing)

2. The union of a finite number of countably infinite sets is countably infinite
as well. (idea: dove-tailing)

3. The union of a countably infinite number of countably infinite sets is
countably infinite.

4. The set of rational numbers is countably infinite.

5. The power set of the set of natural numbers has a greater cardinality than
itself. (idea: contradiction, diagonalization)



Theorem. The power set of the set of natural numbers has a greater
cardinality than itself. (idea: contradiction, diagonalization)

Proof. The proof is by contradiction.

1. Assume that the power set of N has the same cardinality as N.

2. It follows that there is a one-to-one correspondence between 2N
and N. Consider an arbitrary such mapping f.

3. Consider the table T s.t. T|i,j] = true if the subset S € N mapped
to the index i, i.e. f(S) = i, contains j, i.e. j € S.

4. Consider the set S, = {i € N: T[i,i] = false}.

5. Notice that the set S, is not mapped to any element of N. Why?

6. A contradiction. ]



Cantor’s Theorem

Theorem. If a set S is of any infinite cardinality then its power
set 2° has a greater cardinality, i.e. |2°]| > S |.

(hint: happy, sad sets).

Corollary. There is an infinite series of infinite cardinals.



Cantor’s Theorem

Theorem. There is an infinite series of infinite cardinals.

“a "grave disease" infecting the discipline of mathematics” —Henri Poincaré

“1don't know what predominates in Cantor's theory — philosophy or theology, but | am sure
that there is no mathematics there”— Leopold Kronecker

“.. about one hundred years too soon .. ” — Gosta Mittag-Leffler



Theorem. There is an infinite series of infinite cardinals.

“Most admirable flower of mathematical intellect”

David Hilbert David Hilbert
23 January 1862 — 14 February 1943



Mathematische Probleme. 53

Unermelslich ist die Fiille von Problemen in der Mathematik, und
" sobald ein Problem gelGst ist, tauchen an dessen Stelle zahllose neue
" Probleme auf. Gestatten Sie mir im Folgenden, gleichsam zur Probe,
- aus verschiedenen mathematischen Disziplinen einzelne bestimmte Pro-
" bleme zu nennen, von deren Behandlung eine Forderung der Wissen-
schaft sich erwarten lafst.

Uberblicken wir die Prinzipien der Analysis und der Geometrie,
" Die anregendsten und bedeutendsten Ereignisse des letzten Jahrhunderts
sind auf diesem Gebiete, wie mir scheint, die arithmetische Erfassung
~ des Begriffs des Kontinuums in den Arbeiten von Cauchy, Bolzano,
Cantor und die Entdeckung der Nicht-Euklidischen Geometrie
" durch Gaufs, Bolyai, Lobatschefskij. Ich lenke daher zunichst
- Ihre Aufmerksamkeit auf einige diesen Gebieten angehérenden Probleme.

1. Cantors Problem von der Michtigkeit des Kontinuums.

, Zwei Systeme, d. h. zwei Mengen von gewshnlichen reellen Zahlen
 (oder Punkten) heifsen nach Cantor #quivalent oder von gleicher
eden'Problenn - Méchtigkeit, wenn sie zu einander in eine derartige Beziehung gebracht
e g werden konnen, dafs einer jeden Zahl der einen Menge eine und nur
Wesen " eine bestimmte Zahl der anderen Menge entspricht. Die Untersuchungen
v stll, i von Cantor iiber solche Punktmengen machen einen Satz sehr wahr-
ieh 1 ‘scheinlich, dessen Beweis jedoch trotz eifrigster Bemithungen bisher
Beveis tn noch niemandem gelungen ist; dieser Satz lautet:

it i - Jedes System von unendlich vielen reellen Zahlen, d. h. jede un-
an s Pl endliche Zahlen- (oder Punkt)menge, ist entweder der Menge der ganzen
hen do foe natiirlichen Zahlen 1, 2, 3, ... oder der Menge simtlicher reellen Zahlen
hch dn Bote ‘und mithin dem Kontinuum, d. h. etwa den Punkten einer Strecke,
e e P Hquivalent; 9m Sinne der Aquivalenz giebt es Tiernach nwr zwei Zahlen-
eFragestellmlg" ’menge%, die abzihlbare Menge und das Kontinuwwm. |

o G B Aus diesem Satz wiirde zugleich folgen, dafs das Kontinuum die
il in dn niichste Michtigkeit iber die Méchtigkeit der abzihlbaren Mengen hinaus
bildet; der Beweis dieses Satzes wiirde mithin eine neue Briicke
schlagen zwischen der abziihlbaren Menge und dem Kontinuum.

Es sei noch eine andere sehr merkwiirdige Behauptung Cantors

erwihnt, die mit dem genannten Satze in engstem Zusammenhange
B o AT s D s diaaaa Qotrag liefert.
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The 23 Mathematical Problems of Hilbert

The continuum hypothesis
Prove that the axioms of arithmetic are consistent.

Given any two polyhedra of equal volume. is it always possible to cut the first into finitely many polyhedral pieces
which can be reassembled to yield the second?

Construct all metrics where lines are geodesics.

Are continuous groups automatically differential groups?
Mathematical treatment of the axioms of physics

Is a? transcendental, for algebraic @ = 0,1 and irrational algebraic b ?

The Riemann hypothesis ("the real part of any non-trivial zero of the Riemann zeta function is ¥") and other prime
number problems, among them Goldbach's conjecture and the twin prime conjecture

Find the most general law of the reciprocity theorem in any algebraic number field.

Find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an
integer solution.

Solving quadratic forms with algebraic numerical coefficients.

Extend the Kronecker—Weber theorem on abelian extensions of the rational numbers to any base number field.
Solve 7-th degree equation using continuous functions of two parameters.

Is the ring of invariants of an algebraic group acting on a polynomial ring always finitely generated?
Rigorous foundation of Schubert's enumerative calculus.

Describe relative positions of ovals originating from a real algebraic curve and as limit cycles of a polynomial vector
field on the plane.

Express a nonnegative rational function as quotient of sums of squares.

(a) Is there a polyhedron which admits only an anisohedral tiling in three dimensions?
(b) What is the densest sphere packing?

Are the solutions of regular problems in the calculus of variations always necessarily analytic?
Do all variational problems with certain boundary conditions have solutions?

Proof of the existence of linear differential equations having a prescribed monodromic group
Uniformization of analytic relations by means of automorphic functions

Further development of the calculus of variations



Hilbert’s Programs:

1. Axiomatization for mathematics,
beginning with arithmetic, and a
finitary consistency proof of that
system.

2. Entscheidungsproblem (decision
problem). statements about
mathematics be regarded as formal
sequences of symbols, and
Entscheidungsproblem was to find
an algorithm to decide whether a
statement was valid or not.




Program 1. Axiomatization for mathematics with
finite consistency proofs.

Godel’s Incompleteness Theorems.
(Diagonalization)
1. Any consistent formal system is incomplete.

2. Any consistent formal system containing
elementary arithmetic can not prove its own

Kurt Godel consistency.
April 28, 1906 — January 14, 1978

I

Prove that the axioms of arithmetic are consistent.



Program 2. Entscheidungsproblem (decision problem).

“ Statements about mathematics be regarded as formal sequences of
symbols, and Entscheidungsproblem was to find an algorithm to decide whether a
statement was valid or not. “

10.  Find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an
integer solution.



Program 2. Entscheidungsproblem (decision problem).

“ Statements about mathematics be regarded as formal sequences of
symbols, and Entscheidungsproblem was to find an algorithm to decide whether a
statement was valid or not. “

Challenges:

1. Find a precise mathematical definition for the intuitive idea of algorithm;

Demonstrate beyond doubt that every algorithm has been captured; and

3. Prove that no algorithm on the list can be the solution of the Diophantine
equation problem.

N




Kurt Godel Alonzo Church

April 28, 1906 — January 14, 1978 June 14, 1903 — August 11, 1995

Challenges:

1.
2.
3.

Find a precise mathematical definition for the intuitive idea of algorithm;
Demonstrate beyond doubt that every algorithm has been captured; and

Prove that no algorithm on the list can be the solution of the Diophantine
equation problem.




Alan Turing
23 June 1912 — 7 June 1954
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ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurixG.
[Received 28 May, 1936.—Read 12 November, 1936.]

The “computable” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers.
it is almost equally easy to define and investigate computable functions
of an integral varviable or a real or computable variable, computahle
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and I have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

In §§9. 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions.
the numbers =, e, etc. The computable numbers do not, however, include
all cefinable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
ways similar to the class of real numbers, it is nevertheless enumerable.
In § 8 I examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Godel{. These results

1936.] ON COMPUTABLE NUMBERS, 231

have valuable applications. In particular, it is shown (§11) that the
Hilbertian Entscheidungsproblem can have no solution.

In a recent paper Alonzo Churcht has introduced an idea of *effective
calculability ', which is equivalent to my ‘‘computability "', but is very
differently defined. Church also reaches similar conclusions about the
Entscheidungsproblem}. The proof of equivalence between ‘‘ computa-
bility”” and “effective calculability” is outlined in an appendix to the
present. paper.

1. Computing machines.

We have said that the computable numbers are those whose decimals
are calculable by finite means. This requires rather more explicit
definition. No real attempt will be made to justify the definitions given
until we reach §9. For the present I shall only say that the justification
lies in the fact that the human memory is necessarily limited.

We may compare a man in the process of computing a real number to a
machine which is only capable of a finite number of conditions ¢,, gs, ... ¢
which will be called ‘“m-configurations”’. The machine is supplied with &
“tape” (the analogue of paper) running through it, and divided into
sections (called ‘“squares’) each capable of bearing a ‘“symbol”. At
any moment there is just one square, say the r-th, bearing the symbol &(7)
which is “in the machine”. We may call this square the “scanned
square”’. The symbol on the scanned square may be called the ¢ scanned
symbol”’. The ‘“scanned symbol” is the only one of which the machine
is, so to speak, ““directly aware”. However, by altering its m-configu-
ration the machine can effectively remember some of the symbols which
it has ‘“seen” (scanned) previously. The possible behaviour of the
machine at any moment is determined by the m-configuration ¢, and the
scanned symbol &(r). This pairg,,, &(r) will be called the * configuration’ :
thus the configuration determines the possible behaviour of the machine.
In some of the configurations in which the scanned square is blank (i.e.
bears no symbol) the machine writes down a new symbol on the scanned
square: in other configurations it erases the scanned symbol. The
machine may also change the square which is being scanned, but only by
shifting it one place to right or left. In addition to any of these operations
the m-configuration may be changed. Some of the symbols written down

t Godel, “Uber formal unentscheidhare Sitze der Principia Mathematica und ver-
wandter Systeme, 1", Monatsheftc Math. Phys., 38 (1931), 173-198.

t Alonzo Church, “ An unsolvable problem of el tary ber theory ™, American
J. of Math., 58 (1936), 345-363.

$ Alonzo Church, “A note on the Entscheidungsproblem”, J. of Symbolic Logic, 1
(1936), 40-41.
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11. Application to the Entscheidungsproblem.

The results of § 8 have some important applications. In particular, they
can be used to show that the Hilbert Entscheidungsproblem can have no
solution. For the present I shall confine myself to proving this particular
theorem. For the formulation of this problem I must refer the reader to
Hilbert and Ackermann’s Grundziige der Theoretischen Logik (Berlin,
1931), chapter 3.

I propose, therefore, to show that there can be no general process for
determining whether a given formula U of the functional calculus K is
provable, ¢.e. that there can be no machine which, supplied with any one
A of these formulae, will eventually say whether % is provable.

It should perhaps be remarked that what I shall prove is quite different

from the well-known results of Godelt. Godel hasshown that (in the forma-
lism of Principia Mathematica) there are propositions % such that neither

A nor — Y is provable. As a consequence of this, it is shown that no proof
of consistency of Principia Mathematica (or of K) can be given within that
formalism. On the other hand, I shall show that there is no general method
which tells whether a given formula % is provable in K, or, what comes to
the same, whether the system consisting of K with —2 adjoined as an
extra axiom 1is consistent.



9. The extent of the computable numbers.

No attempt has yet been made to show that the ‘“computable *’ numbers
include all numbers which would naturally be regarded as computable. All
arguments which can be given are bound to be, fundamentally, appeals
to intuition, and for this reason rather unsatisfactory mathematically.
The real question at issue is *“ What are the possible processes which can he
carried out in computing a number?”’

The arguments which I shall use are of three kinds.

(@) A direct appeal to intuition.

(b) A proof of the equivalence of two definitions (in case the new
definition has a greater intuitive appeal).

(¢) Giving examples of large classes of numbers which are
computable.

Once it is granted that computable numbers are all ““computable .
several other propositions of the same character follow. In particular,it
follows that, if there is a general process for determining whether a formula
of the Hilbert function calculus is provable, then the determination can he
carried out by a machine.



I. [Type («)]. This argument is only an elaboration of the ideas of § 1.

Computing is normally done by writing certain symbois on paper. e
may suppose this paper is divided into squares like a child’s arithmetic book.
In elementary arithmetic the two-dimensional character of the paper is
sometimes used. But such a use is always avoidable, and I think that it
will be agreed that the two-dimensional character of paper is no essential
of computation. I assume then that the computation is carried out on
one-dimensional paper, 2.e. on a tape divided into squares. I shall also
suppose that the number of symbols which may be printed is finite. If we
were to allow an infinity of symbols, then there would be symbols differing
to an arbitrarily small extentf. The effect of this restriction of the number
of symbols is not very serious. It is always possible to use sequences of
symbols in the place of single symbols. Thus an Arabic numeral such as

The behaviour of the computer at any moment is determined by the
symbols which he is observing, and his ‘ state of mind”’ at that moment.
We may suppose that there is a bound B to the number of symbols or
squares which the computer can observe at one moment. If he wishes to
observe more, he must use successive observations. We will also suppose
that the number of states of mind which need be taken into account is finite.



Howard Hathaway Aiken (March 8, 1900 — March
14, 1973) was an American physicist and a pioneer
in computing, being the original conceptual
designer behind IBM's Harvard Mark | computer.

“If ik should turn out thak
basic logics of machine
designed for the numerical
solutions of differential
equations coincide with the
logics of a machine intended
to malke bills for a
depar&memf: store, I would
reqgard this as the most
amazing coincidence I have
ever encountered.

Howard Allken, 1956


https://en.wikipedia.org/wiki/Physicist
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Harvard_Mark_I

“Lebt us now return to
anatog:? of the theoretical
computing machines ... It can

e showh that a single
special machine of that type
con be made to do the work
of all. Ik could in fact be
made ko work as a model of
any other machine, This
special machine may be
called the universal
machine.”

Alan Turing, 1947



Part I: Automata Theory



What’s an automaton?
1. A moving mechanical device made in imitation of a human being.

2. A machine that performs a function according to a predetermined set of
coded instructions.




What’s an automaton?
1. A moving mechanical device made in imitation of a human being.

2. A machine that performs a function according to a predetermined set of
coded instructions.




coin

Ready dispense

Finite instruction machine with finite memory (Finite State Automata)
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Finite instruction machine with unbounded memory (Universal Turing machine)
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No_coin K / Not_ready

Ready dispense

* Introduced first by two neuro-psychologists Warren S. McCullough
and Walter Pitts in 1943 as a model for human brain!

* Finite automata can naturally model microprocessors and even
software programs working on variables with bounded domain

e Capture so-called regular sets of sequences that occur in many
different fields (logic, algebra, regular Expressions)

* Nice theoretical properties

* Applications in digital circuit/protocol verification, compilers,
pattern recognition, and so on.




Turing Machines
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* Introduced by Alan Turing as a simple model capable of
expressing any imaginable computation

* Turing machines are widely accepted as a synonym for
algorithmic computability (Church-Turing thesis)

* Using these conceptual machines Turing showed that

first-order logic validity problem is non-computable.

l.e. there exists some problems for which you can never write a

program no matter how hard you try!




