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Alphabet, Strings, and Languages

• An alphabet Σ = {$, &, '} is a finite set of letters/symbols.
• A string over an alphabet Σ is finite sequence of symbols, e.g. 
• sequences '$&, &$$, and $$$ are some strings over Σ = {$, &, '}
• sequences ,, 0, 1, 00, and 01 are some strings over Σ = {0, 1}

• Σ∗ is the set of all strings over Σ, e.g. $$&&$$ ∈ Σ∗, 
• Naturally, A language 1 is a collection/set of strings over some 

alphabet, i.e.  1 ⊆ Σ∗ e.g., 
• 13435 = {6 ∈ Σ∗ ∶ 6 is of even length}
• 1 89:9 = {6 ∈ Σ∗ : 6 is of the form $5&5 for < ≥ 0}



Sets of strings: Σn, Σ*, and Σ+

•Σn is the set of all strings over Σ of length exactly n. 
Defined inductively as:
• Σ0 = {ε}
• Σn = ΣΣn-1 if n > 0

•Σ* is the set of all finite length strings:
Σ* = ∪n≥0 Σn

•Σ+ is the set of all nonempty finite length strings:
Σ+ = ∪n≥1 Σn
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Σn, Σ*, and Σ+

•|Σn| = ?

•|Øn| = ?
• Ø0 = {ε}
• Øn = ØØn-1 = Ø if n > 0

•|Øn| = 1  if n = 0
|Øn| = 0  if n > 0

4

|Σ|n



Σn, Σ*, and Σ+

•|Σ*| = ?
•Infinity. More precisely, ℵ0

•|Σ*| = |Σ+| = |N| = ℵ0

•How long is the longest string in Σ*?
•How many infinitely long strings in Σ*?
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no longest 
string!

none



Languages
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Language
• Definition: A formal language L is a set of strings over some 

finite alphabet Σ or, equivalently, an arbitrary subset of Σ*. 
Convention: Italic Upper case letters denote languages.

• Examples of languages : 

• the empty set Ø

• the set {ε}, 

• the set {0,1}* of all boolean finite length strings.

• the set of all strings in {0,1}* with an odd number of 1’s.

• The set of all python programs that print “Hello World!”

• There are uncountably many languages (but each language 
has countably many strings)
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1 ε 0

2 0 0

3 1 1

4 00 0

5 01 1

6 10 1

7 11 0

8 000 0

9 001 1

10 010 1

11 011 0

12 100 1

13 101 0

14 110 0

15 111 1

16 1000 1

17 1001 0

18 1010 0

19 1011 1

20 1100 0



Much ado about nothing

• ε is a string containing no symbols.  It is not a language.
• {ε} is a language containing one string:  the empty string ε. It is not a 

string.
• Ø is the empty language.  It contains no strings.

9



Building Languages

• Languages can be manipulated like any other set.
•Set opera8ons:
•Union: L1 ∪ L2

• Intersec8on, difference, symmetric difference
•Complement: L̅ =  Σ* \ L =  { x ∈ Σ* | x ∉ L}
• (Specific to sets of strings) concatena8on: L1⋅L2 = { xy | 
x ∈ L1, y ∈ L2 } 
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Concatenation
•L1⋅L2 = L1L2={ xy | x ∈ L1, y ∈ L2 } (we omit the bullet 
often)

e.g. L1 = { fido, rover, spot }, L2 = { fluffy, tabby }
then L1L2 ={ fidofluffy, fidotabby,  roverfluffy, ...}
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|L1L2| =?
6

L1 = {a,aa}, L2= {ε}
L1L2 = ?L1L1 = {a,aa}, L2 = Ø

L1L2 = ?Ø



Building Languages

•Ln inductively defined: L0 = {ε}, Ln = LLn-1

Kleene Closure (star) L*

Definition 1: L* = ∪n≥0 Ln,  the set of all strings 
obtained by concatenating a sequence of zero or 
more stings from L
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Building Languages

•Ln induc&vely defined: L0 = {ε}, Ln = LLn-1

Kleene Closure (star) L*

Recursive Definition: L* is the set of strings w
such that either 
—w= ε or
— w=xy for x in L and y in L*
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Building Languages

• {ε}* =  ?    Ø* = ? 

• For any other L, the Kleene closure is infinite and contains 
arbitrarily long strings. It is the smaller superset of L that is 
closed under concatenation and contains the empty string.

• Kleene Plus

L+ = LL*, set of all strings obtained by concatenating a 
sequence of at least one string from L. 

—When is it equal to L* ?
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{ε}* =  Ø* = {ε}



Regular Languages
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Regular Languages

•The set of regular languages over some alphabet Σ
is defined inductively by:
• L is empty
• L contains a single string (could be the empty string)
• If L1, L2 are regular, then L= L1 ∪ L2 is regular
• If L1, L2 are regular, then L= L1 L2 is regular
• If L is regular, then L* is regular
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Regular Languages Examples

• L = any finite set of strings. E.g., L = set of all strings of 
length at most 10

• L = the set of all strings of 0’s including the empty 
string

• Intuitively L is regular if it can be constructed from 
individual strings using any combination of union, 
concatenation and unbounded repetition.
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Regular Languages Examples

• Infinite sets, but of strings with “regular” patterns
•Σ* (recall: L* is regular if L is)
•Σ+ = ΣΣ*
•All binary integers, starting with 1
•L = {1}{0,1}* 

•All binary integers which are multiples of 37
• later
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Regular Expressions
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Regular Expressions

•A compact notation to describe regular languages
•Omit braces around one-string sets, use + to denote 

union and juxtapose subexpressions to represent 
concatenation (without the dot, like we have been 
doing).
•Useful in 
• text search (editors, Unix/grep)
• compilers: lexical analysis
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Regular Expressions

• In arithmetic, we can use operations ×,+ to build 
up expressions such as (5 + 3)×4
•Similarly, we can use regular operations to build up 

expressions describing languages, which are called 
regular expressions.
•E.g 0 ∪ 1 0∗
•Value of arithmetic expression above is 32.
•Value of a regular expression is a language (which 

one?)
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Inductive Definition
A regular expression r over alphabet Σ is one of the following 

(L(r) is the language it represents):
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Atomic expressions (Base cases)

Ø L(Ø) = Ø

w for w ∈ Σ* L(w) = {w}

Inductively defined expressions

(r1+r2) L(r1+r2) = L(r1) ∪ L(r2)

(r1r2) L(r1r2) = L(r1)L(r2)

(r*) L(r*) = L(r)*

Any regular language has a regular expression and vice versa

alt notation
(r1|r2) or 
(r1∪r2)



Regular Expressions

• Can omit many parentheses
• By following precedence rules :

star (*) before concatenation (⋅), before union (+)
(similar to arithmetic expressions)

• e.g.  r*s + t  ≡ ((r*) s) + t

• 10* is shorthand for {1}⋅{0}* and NOT {10}*

• By associativity: (r+s)+t ≡ r+s+t, (rs)t ≡ rst

• More short-hand notation
• e.g., r+ ≡ rr* (note: + is in superscript)
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Regular Expressions: Examples
• (0+1)*

• All binary strings

• ((0+1)(0+1))*

• All binary strings of even length

• (0+1)*001(0+1)*

• All binary strings containing the substring 001

• 0*  +  (0*10*10*10*)*

• All binary strings with #1s ≡ 0 mod 3

• (01+1)*(0+ε)

• All binary strings without two consecutive 0s
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Exercise:  create regular expressions

• All binary strings with either the pattern 001 or the pattern 100
occurring somewhere

• All binary strings with an even number of 1s
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one answer:   (0+1)*001(0+1)*  +   (0+1)*100(0+1)*

one answer:   0*(10*10*)*



Regular Expression Identities

• r*r* = r*
• (r*)* = r*
• rr* = r*r
• (rs)*r = r(sr)*
• (r+s)* = (r*s*)* = (r*+ s*)* = (r+s*)* = ... 
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Equivalence 

•Two regular expressions are equivalent if they 
describe the same language. eg.

• (0+1)* = (1+0)* (why?)
•Almost every regular language can be represented 

by infinitely many distinct but equivalent regular 
expressions

• (L Ø)*Lε+Ø = ?
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Regular Expression Trees
• Useful to think of a regular expression as a tree. Nice visualiza8on of 

the recursive nature of regular expressions. 

• Formally, a regular expression tree is one of the following:

• a leaf node labeled Ø

• a leaf node labeled with a string

• a node labeled +  with two children, each of which is the root 
of a regular expression tree

• a node labeled ⋅ with two children, each of which is the root 
of a regular expression tree

• a node labeled *  with one child, which is the root of a 
regular expression tree
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Not all languages are 
regular!
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Are there Non-Regular Languages?

• Every regular expression over {0,1} is itself a string over 
the 8-symbol alphabet {0,1,+,*,(,),ε, Ø}. 

• Interpret those symbols as digits 1 through 8. Every 
regular expression is a base-9 representation of a unique 
integer. 

• Countably infinite!

• We saw (first few slides) there are uncountably many 
languages over {0,1}.

• In fact, the set of all regular expressions over the {0,1} 
alphabet is a non-regular language over the alphabet 
{0,1,+,*,(,),ε, Ø}!!
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