Languages and
Regular expressions

Lecture 3

Alphabet, Strings, and Languages

* An alphabet ¥ = {a, b, c} is a finite set of letters/symbols.

* A string over an alphabet X is finite sequence of symbols, e.g.
* sequences cab, baa, and aaa are some strings over ¥ = {a, b, c}
* sequences €,0,1,00, and 01 are some strings over ¥ = {0, 1}

« X" is the set of all strings over X, e.g. aabbaa € X7,
* Naturally, A language L is a collection/set of strings over some
alphabet, i.e. L € X" e.g,,
* Loyen ={w €X" : wisofevenlength}
* Lignpny = {w € X" : wis of the form a™b™ forn = 0}

Sets of strings: 2", 2+, and 2*

« 2" is the set of all strings over 2 of length exactly n.
Defined inductively as:

» 2= {e)
o« In=33"ifpn>0
« 2% is the set of all finite length strings:
2F =Umo 27
« 2" is the set of all nonempty finite length strings:
2T =Up1 27

2" 2+ and 2*

o |2n| — |2|n
|| =
* B0 ={¢}

c "=00""'=0@ifn>0

¢ |@* =1 ifn=0
|| =0 ifn>0

2 2+ and 2*

| 2¥| =7

*Infinity. More precisely, ®Xo

°|2*| = |27 = [N] =No {nmongest‘
*How long is the longest string in 2*7?_string'

How many infinitely long strings in Z? <none

Languages

=

Language

» Definition: A formal language L is a set of strings over some
finite alphabet 2 or, equivalently, an arbitrary subset of 2*.
Convention: Italic Upper case letters denote languages.

* Examples of languages :

W 0 N & »n & W N

* the empty set @

10

the set {¢},

=
[Y

the set {0,1}* of all boolean finite length strings.

=~
N

the set of all strings in {0,1}* with an odd number of 1’s.

=
(°V)

The set of all python programs that print “Hello World!”

=~
"

* There are uncountably many languages (but each language
has countably many strings)

R R R R R
© &® N O W

N
(=]

Much ado about nothing

*cisa containing no symbols. It is not a language.
e {¢}isa containing one string: the empty string €. It is not a
string.

* Dis the . It contains no strings.

Building Languages

* Languages can be manipulated like any other set.

*Set operations:
*Union: L1 U L»
* Intersection, difference, symmetric difference
eComplement: L= 2*\L = {x €X*| x &L}
* (Specific to sets of strings) concatenation: Li-L2 = { xy |
xeLli,y €Ly}

Concatenation

eLilx=Lilo={xylx€Li,y €L} (we omit the bullet

often)

e.g. L1 = { fido, rover, spot }, L2 = { fluffy, tabby }
then Li1L2 ={ fidofluffy, fidotabby, roverfluffy, ...}

/\

J

|L1La| =7
6
p

Li={aaa},[=0
Lil2 =)

~\

r

L1 ={a,aa}, L= {&}
Lil2= [

~\

Building Languages

["inductively defined: L° = {&}, L" = LL*!
Kleene Closure (star) L*

Definition 1: L* = Un=0 L", the set of all strings
obtained by concatenating a sequence of zero or
more stings from L

Building Languages

 ["inductively defined: L° = {&}, L = LL™!
Kleene Closure (star) L*

Recursive Definition: L* is the set of strings w
such that either
—W= & or
— w=xy forxinLandy in L*

Building Languages

» {e}* =17 O*=2{e}*= O*={¢}

* For any other L, the Kleene closure is infinite and contains
arbitrarily long strings. It is the smaller superset of L that is
closed under concatenation and contains the empty string.

 Kleene Plus

L+ = LL*, set of all strings obtained by concatenating a
sequence of at least one string from L.

—When is it equal to L* ?

Regular Languages

Regular Languages

* The set of regular languages over some alphabet
is defined inductively by:

*Lis empty

* L contains a single string (could be the empty string)
*If L1, L2 are regular, then [= L1 U L2 is regular

eIf L1, L2 are regular, then L= L1 L2 is regular

If Lis regular, then L* is regular

Regular Languages Examples

[=any finite set of strings. E.g., L = set of all strings of
length at most 10

[=the set of all strings of 0’s including the empty
string

* |Intuitively L is regular if it can be constructed from

individual strings using any combination of union,
concatenation and unbounded repetition.

Regular Languages Examples

* Infinite sets, but of strings with “regular” patterns
« 2* (recall: L* is regular if L is)
.Z+ — 22*
* All binary integers, starting with 1
e[={1}{0,1}*
* All binary integers which are multiples of 37
*[ater

Regular Expressions

Regular Expressions

* A compact notation to describe regular languages

* Omit braces around one-string sets, use + to denote
union and juxtapose subexpressions to represent
concatenation (without the dot, like we have been

doing).
e Useful in
* text search (editors, Unix/grep)
e compilers: lexical analysis

Regular Expressions

*In arithmetic, we can use operations X, + to build
up expressions such as (5 + 3)x4

e Similarly, we can use regular operations to build up
expressions describing languages, which are called
regular expressions.

*E.g(0U1)0"
*VValue of arithmetic expression above is 32.

*\Value of a regular expression is a language (which
one?)

Inductive Definition

A regular expression r over alphabet 2 is one of the following
(L() is the language it represents):

Atomic expressions (Base cases)

% L(D) =0

w for w eX* L(w) = {w}

N\

Inductively defined expressions

alt notation

(ri+r2) L(r14+r2) = L(r1) U L(r2) (rlr2) or
(rir2) L(r1r2) = L(r1)L(r2) (rUr2))
(r*) L(r*) = L(r)*

Any regular language has a regular expression and vice versa

Regular Expressions

e Can omit many parentheses

* By following precedence rules :
star (*) before concatenation (-), before union (+)
(similar to arithmetic expressions)

e eg. r¥s+t =((r*)s) +t¢
e 10* 1s shorthand for {1}-{0}* and NOT {10} *
* By associativity: (r+s)+t =r+s+t, (rs)t =rst
* More short-hand notation

e e.g., r" =rr* (note: T isin superscript)

Regular Expressions: Examples

(O+1)*

* All binary strings

((0+1)(0+1))*

e All binary strings of even length
(0+1)*001(0+1)*

e All binary strings containing the substring 001
0* + (0*10*10*10%*)*

* All binary strings with #1s =0 mod 3
(01+1)*(0+¢)

* All binary strings without two consecutive Os

Exercise: create regular expressions

* All binary strings with either the pattern 001 or the pattern 100
occurring somewhere

one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*

* All binary strings with an even number of 1s

one answer: 0*(10*10%)*

Regular Expression ldentities

° r*r* — r*
° (r*)* — r*
s Ir* =r’r

* (rs)*r = r(sr)*
o (r+s)* = (r*s*)* = (r*+ s¥*)* = (r+s*)* = ...

Equivalence

* Two regular expressions are equivalent if they
describe the same language. eg.

(0+1) = (14+0)* (why?)

* Almost every regular language can be represented
by infinitely many distinct but equivalent regular
expressions

o (L @)*Le+@ = ?

Regular Expression Trees

e Useful to think of a regular expression as a tree. Nice visualization of
the recursive nature of regular expressions.

* Formally, a regular expression tree is one of the following:

a leaf node labeled @
a leaf node labeled with a string

a node labeled + with two children, each of which is the root
of a regular expression tree

a node labeled - with two children, each of which is the root
of a regular expression tree

a node labeled * with one child, which is the root of a
regular expression tree

* 1 * ©

0] 1
A regular expression tree for O + 0*1(10*1 + 01*0)*10*

29

Not all languages are
regularl!

Are there Non-Regular Languages?

Every regular expression over {0,1} is itself a string over
the 8-symbol alphabet {0,1,+,%,(,),&, @}.

Interpret those symbols as digits 1 through 8. Every
regular expression is a base-9 representation of a unique
integer.

Countably infinite!

We saw (first few slides) there are uncountably many
languages over {0,1}.

In fact, the set of all regular expressions over the {0,1}
alphabet is a non-regular language over the alphabet

{0,1,+,%,(,).€, O}!!

