
Finite State Machines
Lecture 4

1

Recall a Language is Regular if

• L is empty
• L contains a single string (could be the empty string)
• If L1, L2 are regular, then L= L1 ∪ L2 is regular
• If L1, L2 are regular, then L= L1 L2 is regular
• If L is regular, then L* is regular

2

Unbounded vs. Infinite
• Why do we need bullet 5?

• Why can’t we say that L* is the infinite union of {ε} ∪
L ∪ LL ∪ LLL ∪…

• Recursive definitions: at every branch of recursion we
need to reach a base case in finite number of steps.

• We can invoke the union rule for any integer n number
of steps

• infinity is not a number! I can only produce infinite sets
by an operation like the *.

3

Complexity of Languages

•Central Question: How complex an algorithm is needed to
compute (aka decide) a language? How much memory do I
need?

• Today: a simple class of algorithms, that are fast and can be
implemented using minimal hardware

• Finite State Machines -Deterministic Finite Automata (FSM-DFA)

• DFAs around us: Vending machines, Elevators, Digital watch logic,
Calculators, Lexical analyzers (part of program compilation), …

4

DFA (a.k.a. FSM)
• Finite: cannot use more memory to work on

longer inputs
• Eg. Automatic door

5
door

front pad rear pad

DFA (a.k.a. FSM)
• Finite: cannot use more memory to work on

longer inputs
• Eg. Automatic door

6

CLOSED OPEN

FRONT

NEITHER

REAR
BOTH
NEITHER

FRONT
REAR
BOTH

DFA (a.k.a. FSM)
• Finite: cannot use more memory to work on

longer inputs
• Eg. Automatic door

7

NEITHER FRONT REAR BOTH

CLOSED CLOSED OPEN CLOSED CLOSED

OPEN CLOSED OPEN OPEN OPEN

Input signal

State

Multiple of 5

• One

8

• Only one variable, rem, which represents the remainder of the part of the
string I read so far when I divided by 5.

• Could do long division, keep the intermediate results in an array but I don’t want to
spend that much memory!

Multiple of 5

• m

9

m0=2m if I see “0” next
m1=2m+1 if I see “1” next

• If I know the remainder for m mod 5, and I read one more bit
then line 3 tells me what the new remainder is (either m0 or m1)

Multiple of 5
• Important feature of algorithm: Aside from variable i

which counts the input bits and is necessary to read
input, I only have one variable rem, which takes only a
small (5) number of values.

• Streaming algorithm : Data flies by! Once w[i] is gone,
it is gone forever.

• Variable has a very small number of states, which I am
able to specify at compile time. Very small amount of
memory!

10

DFA (a.k.a. FSM)
• check if binary input is a multiple of 5.

11

next input
symbol
fed here

output bit
for the

input so
far

store x mod 5 here
(initial value “null”).
output bit indicates if it is 0.

next-state
look-up

table

calculate x’ mod 5 from
x mod 5 and input bit b,

where x’ = 2x + b

“Lookup” table

• q encapsulates the state of the algorithm

• Takes a small amount of values, which I know up front (e.g. q is a
number between 1 and 4). Unbounded, not infinite!

• Depending on the character I read at position i, I change my state
with function called delta (δ).

• I have a hardcoded array A and based on what the state is when I
finish reading the string, I output the value of the array.

“Lookup” table

13

Instead of doing arithmetic at all, I could just hard code this lookup table into the
code and simply do a lookup

DFA (a.k.a. FSM)

• Algorithm or Machine? Algorithm is a Machine!!
• Once you program the machine, you don’t have to monitor it. It runs

AUTOMATICALLY (Automaton…)

14

DFA (a.k.a. FSM)

15

0 1
0 1 3

0 1

1

0 1

2

41
0 1

0

0

•Equivalent view as a graph!

input
bit

current
state

next
state

0 0 0
1 0 1
0 0 2
1 2 0
0 0 0
1 0 1
0 1 2
1 2 0

DFA (a.k.a. FSM)
• Example: check if input 01010101 is a multiple of 5

16

0 1
0 1 3

0 1

1

0 1

2

41
0 1

0

0

input
bit

current
state

next
state

0 0 0
1 0 1
0 0 2
1 2 0
0 0 0
1 0 1
0 1 2
1 2 0

DFA (a.k.a. FSM)
• check if input (MSB first) is a multiple of 5

17

How to fully specify a DFA (syntax):
FINITE Alphabet: Σ
FINITE Set of States: Q
Start state: s ∈ Q
Set of Accepting states: A ⊆ Q
Transition Function: δ : Q × Σ → Q

DFA (a.k.a. FSM)
• 3 equivalent ways to specify a FSM:

18

1) 2)

3)

0 1
0 1 3

0 1

1

0 1

2

41
0 1

0

0

Together with a description of what are the states and what are the accepting states

How to interpret these functions?

•M = (Σ, Q, δ, s, A)
• δ*(q,w) be the state M reaches starting from a

state q ∈ Q , on input w ∈ Σ*
• Recursive definition?
• What are the cases going to be?

19

Behavior of a DFA on an input

• M = (Σ, Q, δ, s, A)
• δ*(q,w) be the state M reaches starting from a state q ∈ Q , on input

w ∈ Σ*
• Formally,

20

• δ*(q,w) = q if w=ε

• δ*(q,w) = δ*(δ(q,a), x) if w=ax

Behavior of a DFA on an input

• δ*(0,01001) = ?
• δ*(0,ε) = ?
• δ*(0,010) = ?
• δ*(2,01) = ?

21

4
0
2
4

0 1
0 1 3

0 1

1

0 1

2

41
0 1

0

0

Behavior of a DFA on an input

• δ*(0,01001) = 4

• Specify a walk in the graph
• Best represented as

22

0 1
0 1 3

0 1

1

0 1

2

41
0 1

0

0

0
0

0
1

1
0

2
0

4
1

4

Example: What strings does this machine
accept?

24

1

0 0

s t
1

Alphabet: Σ ={0,1}
Set of States: Q ={s,t}
Start state: s ∈ Q
Accepting state: t ∈ Q
Transition Function: δ : Q × Σ → Q
δ(s,0)=s, δ(s,1)=t, δ(t,0)=t, δ(t,1)=s

Question: what is L(M)?

Answer: strings with odd number of ones!

Construction Exercise
• L(M) = {w | w ends in 01 or 10 }
• Is it regular??
•What should be in the memory?
• Last two bits seen.

Possible values: ε, 0, 1, 00, 01, 10, 11

25

00 01

10 11

ε

0

1
0

1

0

1
0 1

0

1

0

0

1

1

0

1

(0+1)*01+(0+1)*10

Construction Exercise
• L(M) = {w | w ends in 01 or 10 }
• Is it regular??
•What should be in the memory? Last two bits seen.

Possible values: ε, (0+00), (1+11), 01, 10

26

0

0 01

10 1

1

0

1
0 1

ε 0

1

0

1

Construction Exercise
• L(M) = {w | w contains 011 or 110 }

• Brute force: Enough to remember last 3 symbols (8+4+2+1=15
states). Stay at accepting states if reached.

• “Clever” construction: Enough to remember valid prefixes.
States: ε, 0, 1, 01, 11, OK (can forget everything else)

27

0 1 1

0,10

1

ε 0 01 OK

11

1 0

1

10

0

State: longest suffix
of input that is a
valid prefix of

pattern

