
Finite State Machines
Lecture 4
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Recall a Language is Regular if

• L is empty
• L contains a single string (could be the empty string)
• If L1, L2 are regular, then L= L1 ∪ L2 is regular
• If L1, L2 are regular, then L= L1 L2 is regular
• If L is regular, then L* is regular
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Unbounded vs. Infinite
• Why do we need bullet 5?

• Why can’t we say that L* is the infinite union of {ε} ∪
L ∪ LL ∪ LLL ∪…

• Recursive definitions: at every branch of recursion we 
need to reach a base case in finite number of steps.

• We can invoke the union rule for any integer n number 
of steps

• infinity is not a number! I can only produce infinite sets 
by an operation like the *.
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Complexity of Languages

•Central Question: How complex an algorithm is needed to 
compute (aka decide) a language? How much memory do I 
need?

• Today: a simple class of algorithms, that are fast and can be 
implemented using minimal hardware

• Finite State Machines -Deterministic Finite Automata (FSM-DFA)

• DFAs around us: Vending machines, Elevators, Digital watch logic, 
Calculators, Lexical analyzers (part of program compilation), …
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DFA (a.k.a. FSM)
• Finite: cannot use more memory to work on 

longer inputs
• Eg. Automatic door
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DFA (a.k.a. FSM)
• Finite: cannot use more memory to work on 

longer inputs
• Eg. Automatic door
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DFA (a.k.a. FSM)
• Finite: cannot use more memory to work on 

longer inputs
• Eg. Automatic door
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Multiple of 5

• One
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• Only one variable, rem, which represents the remainder of the part of the 
string I read so far when I divided by 5. 

• Could do long division, keep the intermediate results in an array but I don’t want to
spend that much memory!



Multiple of 5

• m
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m0=2m if I see “0” next
m1=2m+1 if I see “1” next

• If I know the remainder for m mod 5, and I read one more bit 
then line 3 tells me what the new remainder is (either m0 or m1)



Multiple of 5
• Important feature of algorithm: Aside from variable i

which counts the input bits and is necessary to read 
input, I only have one variable rem, which takes only a 
small (5) number of values. 

• Streaming algorithm : Data flies by! Once w[i] is gone, 
it is gone forever. 

• Variable has a very small number of states, which I am 
able to specify at compile time. Very small amount of 
memory!
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DFA (a.k.a. FSM)
• check if binary input is a multiple of 5. 
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“Lookup” table

• q encapsulates the state of the algorithm

• Takes a small amount of values, which I know up front (e.g. q is a 
number between 1 and 4). Unbounded, not infinite!

• Depending on the character I read at position i, I change my state 
with function called delta (δ).

• I have a hardcoded array A and based on what the state is when I 
finish reading the string, I output the value of the array.



“Lookup” table
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Instead of doing arithmetic at all, I could just hard code this lookup table into the 
code and simply do a lookup  



DFA (a.k.a. FSM)

• Algorithm or Machine? Algorithm is a Machine!!
• Once you program the machine, you don’t have to monitor it. It runs 

AUTOMATICALLY (Automaton…)
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DFA (a.k.a. FSM)
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input 
bit

current 
state

next 
state

0 0 0
1 0 1
0 0 2
1 2 0
0 0 0
1 0 1
0 1 2
1 2 0

DFA (a.k.a. FSM)
• Example: check if input 01010101 is a multiple of 5
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input 
bit

current 
state

next 
state

0 0 0
1 0 1
0 0 2
1 2 0
0 0 0
1 0 1
0 1 2
1 2 0

DFA (a.k.a. FSM)
• check if input (MSB first) is a multiple of 5
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How to fully specify a DFA (syntax):
FINITE Alphabet: Σ
FINITE Set of States: Q
Start state: s ∈ Q
Set of Accepting states: A ⊆ Q
Transition Function: δ : Q × Σ → Q 



DFA (a.k.a. FSM)
• 3 equivalent ways to specify a FSM:
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Together with a description of what are the states and what are the accepting states



How to interpret these functions?

•M = (Σ, Q, δ, s, A) 
• δ*(q,w) be the state M reaches starting from a 

state q ∈ Q , on input w ∈ Σ*
• Recursive definition?
• What are the cases going to be?
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Behavior of a DFA on an input

• M = (Σ, Q, δ, s, A) 
• δ*(q,w) be the state M reaches starting from a state q ∈ Q , on input 

w ∈ Σ*
• Formally, 
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• δ*(q,w) = q  if w=ε

• δ*(q,w) = δ*(δ(q,a), x)  if w=ax



Behavior of a DFA on an input

• δ*(0,01001) = ?
• δ*(0,ε) = ?
• δ*(0,010) = ?
• δ*(2,01) = ?
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Behavior of a DFA on an input

• δ*(0,01001) = 4

• Specify a walk in the graph
• Best represented as 
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Example:  What strings does this machine 
accept?
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Alphabet: Σ ={0,1}
Set of States: Q ={s,t}
Start state: s ∈ Q
Accepting state: t ∈ Q
Transition Function: δ : Q × Σ → Q
δ(s,0)=s, δ(s,1)=t, δ(t,0)=t, δ(t,1)=s

Question: what is L(M)?

Answer: strings with odd number of ones!



Construction Exercise
• L(M) = {w | w ends in 01 or 10 }
• Is it regular?? 
•What should be in the memory? 
• Last two bits seen. 

Possible values: ε, 0, 1, 00, 01, 10, 11
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Construction Exercise
• L(M) = {w | w ends in 01 or 10 }
• Is it regular?? 
•What should be in the memory? Last two bits seen. 

Possible values: ε, (0+00), (1+11), 01, 10
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Construction Exercise
• L(M) = {w | w contains 011 or 110 }

• Brute force: Enough to remember last 3 symbols (8+4+2+1=15 
states). Stay at accepting states if reached.

• “Clever” construction: Enough to remember valid prefixes.
States: ε, 0, 1, 01, 11, OK (can forget everything else)
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