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NFA recap
• Last lecture, we saw these objects called NFAs…
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• Like DFA, but with a weird transition function: 
choices!

• DFA is a special case of NFA (how?)



NFA recap
• Last lecture, we saw these objects called NFAs…
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3 models for (Regular) Languages:

Regular Expression NFADFA



NFA recap
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Kleene’s Theorem

Regular Expression NFADFA= =



NFA+ε: Formally

• I want to be able to change my state without consuming 
input
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NFA+ε: Formally
• I want to be able to change my state without consuming 

input

• On input 10001?
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NFA+ε: Formally

N = (Σ, Q, δ, s, A) 
Σ: alphabet Q: state space s: start state A: set of accepting states

δ : Q × {Σ ∪ ε} → P(Q)
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We say q ⇝N pw

e.g., δ(1,o) = {2}, δ(1,x)=Ø, δ(1,ε)={2}.

L(N) =



NFA+ε: Formally

N = (Σ, Q, δ, s, A) 
Σ: alphabet Q: state space s: start state A: set of accepting states

δ : Q × {Σ ∪ ε} → P(Q)
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We say q ⇝N p if ∃ a1,…, at ∈ Σ ∪ {ε} and q1,…,qt+1 ∈ Q, such that
w = a1… at, q1 = q, qt+1 = p, and  ∀ i ∈ [ 1, t ],   qi+1 ∈ δ(qi,ai)

w

e.g., δ(1,o) = {2}, δ(1,x)=Ø, δ(1,ε)={2}.

L(N) = { w |             for some p ∈ A }
ws ⇝N p



NFA+ε: Formally
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ε
e.g., δ(1,o) = {2}, δ(1,x)=Ø, δ(1,ε)={2}. ε-reach({1}) = { 1, 2, 3, 0 }

We define the ε-reach of a state p:



NFA+ε: Formally
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ε
e.g., δ(1,o) = {2}, δ(1,x)=Ø, δ(1,ε)={2}. ε-reach({1}) = { 1, 2, 3, 0 }

• any state q such that               for some r in the ε-reach of pεr ⇝N q

We define the ε-reach of a state p:

• p itself

Means that there is a sequence of ε-transitions from p to q



Can modify any NFA N, to get an NFA Nnew without ε-moves
Nnew = (Σ, Qnew,  δnew, snew, Anew)

Qnew=Q

snew=s

Anew={q| ε-reach(q) includes a state in A}

e.g.: δnew(1,o) =    ?            .

Get rid of nothing
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Can modify any NFA N, to get an NFA Nnew without ε-moves
Nnew = (Σ, Qnew,  δnew, snew, Anew)

Qnew=Q

snew=s

Anew={ }

.

Get rid of nothing
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Can modify any NFA N, to get an NFA Nnew without ε-moves
Nnew = (Σ, Qnew,  δnew, snew, Anew)

Qnew=Q

snew=s

Anew={q| ε-reach(q) includes a state in A}

.

Theorem: L(N) = L(Nnew)

Get rid of nothing
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NFA+ε: Formally
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NFA-ε
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NFA-ε
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NFA-ε
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NFA-ε
• Same NFA!
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Kleene’s theorem
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Regular Expression NFADFA= =

Theorem: A language L can be described by a regular expression
if and only if L is the language accepted by a DFA.



Kleene’s theorem
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DFA Regular 
Expressions

NFA+ε



Kleene’s theorem
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DFA Regular 
Expressions

NFA+ε

Do Nothing

1 2

3



Kleene’s theorem
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DFA Regular 
Expressions

NFA+ε

Do Nothing

1 2
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DFA from NFA (aka the subset 
construction)
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NFA: N = (Σ, Q, δ, s, A)

δ : Q × Σ → P(Q)

assume no
ε-moves
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NFA
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NFA
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NFA
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NFA to DFA
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NFA: N = (Σ, Q, δ, s, A)

δ : Q × Σ → P(Q)

assume no
ε-moves

DFA: MN = (Σ, Q’, δ’, s’, A’)

Q’=2Q=P(Q)
s’={s}

Deterministic state is now a set of
(non-deterministic) states

A’= {all subsets P of Q s.t. P∩A ≠ Ø}

δ’ : P(Q) × Σ → P(Q)
δ’(P, a) = ∪q∈P δ(q,a)

Theorem : L(N) = L(MN)



NFA to DFA
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• There are too many states in this DFA, more than 
• necessary.

• Construct the DFA incrementally instead, 
• by performing BFS on the DFA graph.

• Prepare a table as follows
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P ε δ’(P,0) δ’(P,1) q’∈A’
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Kleene’s theorem
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DFA Regular 
Expressions

NFA+ε

Do Nothing

1 2
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Subset Construction



Kleene’s theorem

37

DFA Regular 
Expressions

NFA+ε

Do Nothing

1 2

3

Subset Construction



NFAs from Regular Languages

Theorem (Thompsons Algorithm): Every regular language 
is accepted by an NFA.

We will show how to get from regular expressions to NFA+ε, 
but in a particular way. One accepting state only!
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Single Final State Form

Can compile a given NFA so that there is 
only one final state

(and there is no transition out of that state)
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Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.
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Atomic expressions (Base cases)

Ø L(Ø) = Ø

w for w ∈ Σ* L(w) = {w}

Inductively defined expressions

(r1+r2) L(r1+r2) = L(r1) ∪ L(r2)
(r1r2) L(r1r2) = L(r1)L(r2)
(r*) L(r*) = L(r)*

NFAs from Regular Languages



Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?
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Base Case 1: L=Ø

NFAs from Regular Languages



Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?
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Base Case 1: L=Ø

NFAs from Regular Languages

s t



Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?
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Base Case 2: L={ε}

NFAs from Regular Languages

s t
ε



Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?
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Base Case 3: L={a}, some 
string in Σ* (e.g. HW2)

NFAs from Regular Languages

s t
H W 2



Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?
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Inductive case 1: L=A ∪ B

NFAs from Regular Languages



Closure Under Union
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Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?
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Inductive case 1: L=A ∪ B

NFAs from Regular Languages
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Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?
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Inductive case 2: L=AB

NFAs from Regular Languages



Closure Under Concatenation
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Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?
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Inductive case 2: L=AB

NFAs from Regular Languages

ε 

A B



Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?
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Inductive case 3: L=A*

NFAs from Regular Languages



Closure Under Kleene Star
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Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?
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Inductive case 3: L=A*

NFAs from Regular Languages
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Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Why not?
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Inductive case 3: L=A*

NFAs from Regular Languages

ε 

ε 

s t

A



Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.
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Inductive case 3: L=A*

NFAs from Regular Languages
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Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.
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Inductive case 3: L=A*

NFAs from Regular Languages
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Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

I need the new start state.
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Inductive case 3: L=A*

NFAs from Regular Languages
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NFAs & Regular Languages

Example : L given by regular expression (10+1)*
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NFAs & Regular Languages

Example : L given by regular expression (10+1)*
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