NFA/DFA,
Relation to Reqular
Lanquaqges

NFA recap ‘

« |Last lecture, we saw these objects called NFAs...

\OOJ ; |
%
O 00"

o [ike DFA, but with a weird transition function:

choices!

« DFA is a special case of NFA (how?)

NFA recap ‘

« |Last lecture, we saw these objects called NFAs...

3 models for (Regular) Languages:

Regular Expression DFA NFA

NFA recap ‘

Kleene's Theorem

Regular Expression DFA NFA

NFA+e: Formally ‘

- | want to be able to change my state without consuming

input
\@0,1 -
OO

1

1

oamee)

NFA+e: Formally ‘

- | want to be able to change my state without consuming

iInput
E 0 °
0,1 : /[c e
NGO O O]
O

+ On input 100017

NFA+e: Formally

N=(Z,0,0,s,A)
2. alphabet Q: state space s: start state A: set of accepting states

0:0x{ZUe}— PO

We say g v p

L(N) =

e.g., 0(1,0) =4{2},0(1,x)=0, 0(1.,6)={2}.

<~)<51—Z/€\/\ €
QT D00

NFA+e: Formally

N=(Z,0,0,s,A)
2. alphabet Q: state space s: start state A: set of accepting states

0:0x{ZUe}— PO

We say q%zvp f Fai,..,a: €2 U {e} and q1,...,q+1 € Q, such that
w=ai...a, gqi=q,qw1=p, and Vi €[1,t], g1 € 0(qi,ai)

LIN)={wl® N D for somep €A }

e.g., 0(1,0) =4{2},0(1,x)=0, 0(1.,6)={2}.

Oa—m €
QT D= Q00

NFA-+e: Formally ‘

We define the e-reach of a state p:

e.g., 0(1,0) ={2},0(1,x)=0, 0(1,6)={2}. e-reach({1}) ={1,2,3,0}

Oa—Z/t\/\ €
QT D00

NFA+e: Formally

We define the e-reach of a state p:

. pitself

. any state q such that 7 v q for some r in the e-reach of P

Means that there 1s a sequence of e-transitions from p to q

e.g., 0(1,0) ={2},0(1,x)=0, 0(1,6)={2}. e-reach({1}) ={1,2,3,0}

<~)<51—Z/€\/\ €
QT D00

10

11

Get rid of nothing

Can modify any NFA N, to get an NFA Nnew Without e-moves

Niew = (2, Qnew, 6new, Snew, Anew)

Qnew:Q
Snew=3§
Anew={ql €-reach(q) includes a state in A} {(plg ', p)
5 L
5neW(Q7 CL) — UpEs—reach(q) (p7 a)

e.g.: 5new(1 0) = {9;92,3,4,5}

U\l/ \/

Get rid of nothing ‘

Can modify any NFA N, to get an NFA Nnew Without e-moves
Niew = (2, Qnew, 5new, Snew, Anew)

AneW: { }

12

13

Get rid of nothing

Can modify any NFA N, to get an NFA Nnew Without e-moves

Niew = (2, Qnew, 6new, Snew, Anew)
QneW: Q

Snew=239

Anew={(ql €-reach(q) includes a state in A}

(Snew(cb CL) — UpEs—reach(q)d(

Theorem: L(N) = L(Nnew)

a
{plg=np}

L
p,a

)

NFA+¢: Formally ‘

LA
B

5neW(Q7 a) — UpEs—reach(q)é(pa a)

NFA-¢ @

- Same NFA!

Kleene’s theorem

Regular Expression DFA NFA

Theorem: A language L can be described by a regular expression
If and only if L is the language accepted by a DFA.

21

Kleene’s theorem ‘

4 h

DFA | | NFA+e T——1 Regular
EXpressions

& /

22

Kleene’s theorem ‘

4 h

Regular
EXpressions

& /

DFA

23

Kleene’s theorem ‘

4 h

Regular
5 Expressions

& /

DFA

24

DFA from NFA (aka the subset @

construction)
NFA: N=(2,0,0,s,A)

0:0x2— P(O)

asSume no
E-MOVES

\OOJ ; |
()

1

1

OOk

1001 1001 1001 1001 1001

1001 1001 1001 1001 1001

1001 001 01 1

NFA to DFA ‘

NFA: N=(2.0.0.s5.4) DFA My=(Z,0°,0,s,A)

0:0x2— P(Q) Q’=2%=P(Q)
A
- N >
assume no > _{S}
E-Moves Deterministic state is now a set of
(non-deterministic) states

A’= {all subsets P of Q s.t. PA # @}

Theorem : L(N) = L(Mn) 5 : P(Q) x = — P(Q)
0 (P,a) = Uger 0(q.,a)

30

31

NFA to DFA

- There are too many states in this DFA, more than
- necessary.

. Construct the DFA incrementally instead,
- by performing BFS on the DFA graph.

- Prepare a table as follows

34

as

bs

ats

bts

‘ € ‘ 5'(P0) ‘ d'(P,1) ‘q’

S

as

bs

ats

bts

as

ats

as

ats

ats

bs

bs

bts

bts

bts

No

No

No

Yes

Yes

Kleene’s theorem ‘

4 h

Regular
5 Expressions

& /

DFA

36

Kleene’s theorem ‘

4 h

Regular
EXpressions

& /

DFA

37

NFAs from Regular Languages ‘

Theorem (Thompsons Algorithm): Every regular language
IS accepted by an NFA.

We will show how to get from regular expressions to NFA+e,
but in a particular way. One accepting state only!

38

Single Final State Form ‘

Can compile a given NFA so that there is
only one final state
(and there is no transition out of that state)

39

NFAs from Regular Languages ®

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Atomic expressions (Base cases)

%) L(D) =
w for w € 3% L(w) = {w}
(r1+r2) L(r1+r2) = L(r1) U L(r2)
(r1r2) L(r1r2) = L(r1)L(72)

" (r*) L(r*) = L(r)*

NFAs from Regular Languages ‘

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Base Case 1: L=0)

What is a NFA for L7

41

NFAs from Regular Languages ‘

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Base Case 1: L=0)

What is a NFA for L? —(s)

42

NFAs from Regular Languages ‘

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Base Case 2: L={¢}

What is a NFA for L? —()>—@

43

NFAs from Regular Languages ‘

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Base Case 3: L={a}, some
string In Z* (e.g. HW?2)

H w2
What is a NFA for L2 —(s)—(—()—()

44

NFAs from Regular Languages ®

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 1: L=A UB

What is a NFA for L7

45

Closure Under Union

~ O 0o 00
O 8 O
1
QQ@ € Q
OO O~ 0

NFAs from Regular Languages ‘

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 1: L=A UB

What is a NFA for L7

48

NFAs from Regular Languages ®

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 2: L=AB

What is a NFA for L7

49

Closure Under Concatenation ‘
O O O

Ot QO@
O O

NFAs from Regular Languages ‘

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 2: L=AB

What is a NFA for L?
0P+ 1oL 0
il B e

51

NFAs from Regular Languages ®

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 3: L=A*

What is a NFA for L7

52

®

Closure Under Kleene Star

O o
O

O
T

NFAs from Regular Languages ‘

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 3: L=A*

What is a NFA for L7

54

NFAs from Regular Languages ‘

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 3: L=A*

Why not”?

55

NFAs from Regular Languages ‘

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 3: L=A*

56

NFAs from Regular Languages ‘

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 3: L=A*

57

NFAs from Regular Languages ‘

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 3: L=A*

E \
| need the new start state.

1O

58

60

NFAs & Regular Languages

Example : L given by regular expression (10+1)*

NFAs & Regular Languages ‘

Example : L given by regular expression (10+1)*

g
| ALIO G)
P

/

E

