Conbtext—-Free rammars
(and Langquaqes)

Today

B3eyond regular expressions:
Context-Free Grammars (CFGs)

What is a CFG?
What is the language associated with a CFG?

Creating CFGs. Reasoning about CFGs.

Today]

First used to study human languages

Important applications in specifying and compiling
programming languages

Include Regular languages, but much more.

Compiler Frontend

Rules encoded as
| . Rules cannot be encoded as
regular expressions

for (i=0; i<n; i++) { Lexical —p —>
at+;
} Analyzer

stmt
¥
ror K Gl E or-stmt\
number][;|id or] [(expr] [;] lexpr][; expr|D]jstmt
< id] [5]id] e+ /¥ /é\ /N /™
[id ++E|EJ IvallHeval fid| K fid] fid] [+ [{lstmt
T v v J
id| number expr
Y \
id| -+

Biological Models

en.wikipedia.org/wiki/L-system

Biological Models ‘

A A

Rule: 1 —>Y

Biological Models

SV

Grammar: Rewriting rules for generating
a set of strings (i.e., a language) from a “seed”

Context-Free Grammar

Example: a (simplistic) syntax for arithmetic expressions

expr — expr + expr
expr — expr x expr
expr — var

var — a

var - D

var — C

g.expr=*a+bxc var ar
o X‘ “dgrives”_l_] ’ @ %J [g]
g C

(This grammar is “ambiguous” since t
parse tree for the same strinQg)

nere Is another

Context-Free Grammar ‘

Example: a (simplistic) syntax for arithmetic expressions

expr — expr + expr expr — expr + expr | expr x expr | var

expr — expr x expr var—alblc

expr — var ‘ short-hand]

var — a

var— " G=(2.V.P.5)
> ={ab,c,+,x} (terminals)
V={expr,var} (non-terminals)

€.9. eXpr"a+ b xC |p_rAa)lA—a}l (prod.rules)

‘ “derives’] S = expr (start symbol) |

10

Context-Free Grammar : Arrows

Production Rule: A - &, A€V, m € (Z U V)*

expr — expr + expr | expr x expr | var
var - a|b|c

Immediately Derives: a1 = az2/if a1, o2 € (X U V)*
st,a1=PAy,c2c=pryandA — x

More clearly, it grammar is G,

we write a =2¢* o'

expr = expr + expr
expr + expr = expr + expr x expr

Derives: a =* o' if 3ai,..., a1 € (S U V)* s.t.
o=, ai=a’, and for all i € [1, 7], oi = ati+1

N

t-step
derivation
a =t o

Context-Free Grammar : Arrows

Production Rule: A - &, A€V, m € (Z U V)*

expr — expr + expr | expr x expr | var
var - a|b|c

Immediately Derives: a1 = az2/if a1, o2 € (X U V)*
st,a1=PAy,c2c=pryandA — x

More clearly, it grammar is G, expr = expr + expr
. . expr + expr = expr + expr x expr
we write a =>¢™ a

Derives: a =* a'if ai,..., an1 € (S U V)* s.t.
o=, ai=a’, and for all i € [1, 7], oi = ati+1

N

t-step
derivation
o= a expr="a+bxc

expr = * expr + expr x expr =>*var+varxvar=*a+bxc

11

12

Context-Free Languages

The language generated by a grammar G
with start symbol S and alphabet Z,
LIG)={w€EZ*|S=¢"w}

Languages generated by a context free grammars
are called Context Free Languages (CFL)

Examples

Over Z={0,1 }, give a grammar for the following languages:

> L={0"1"ln=0)

p L={wlw=wR}

 L={0"1"lm<n}

> L={0"1"Im=#n)

13

14

Examples

Over 2={0,1 }, give a grammar for the following languages:

> L={0"1"1n=0)
S—¢e]|0S1

p L={wlw=wk }
S—¢e|0|1]080] 181
> L={0""lm<n)

Z—€e|0Z1 //0On1n
S—Z1|SIl //0™M"withm < n

 L={0"1"lm#n}

S—A|B

Z—)S‘OZI // Onqn
A—0Z]|0A //O0M1"withm > n
B—-Z1|Bl /0™M"Mwithm <n

Parse Tree

Parse Tree captures the
structure of derivations for a
given string
(but not the exact order)

expr="a+bxc

The exact order of

But structure is important!
@ [

. o]]
Ambiguous grammar: It
some string has two ditferent @ @

parse trees

15

16

Parse Tree

Parse Tree captures the
structure of derivations for a
given string
(but not the exact order)

expr="a+bxc

The exact order of

But structure is important!
@ [

. o]]
Ambiguous grammar: It
some string has two ditferent @ @

parse trees

EXPpr > expr + EXpr x expr > var+varxvar=>"a+b xC
expr=>"a+expr=>"a+exprxc=>"a+bxc

Ambiguity ‘

expr — expr + expr | expr x expr | var
var > a|b|c expr=*a+bxc

17

Ambiguity ‘

expr — expr + expr | expr x expr | var
var > a|b|c expr=*a+bxc

18

19

An Unambiguous Grammar

expr — term + expr | term
term — var | var x term
var - a|b|c

expr="a+bxc

20

An Unambiguous Grammar

expr — term + expr | term
term — var | var x term expr=>"a+bxc
var - a|b|c

In practice, unambiguous
grammars are important
(e.g., in compilers)

Operator precedence enforced [_4]

by requiring all x carried out (to Q
get a “term”) before any +

There are CFLs which do not @ E@
have any unambiguous
grammar: @

iInherently ambiguous languages

21

Examples

> L=L0%)

S—e|0]|SS : Ambiguous!

S —¢e|0S :Unambiguous

» L= set of all strings with balanced parentheses
S—el|(S)|SS : Ambiguous!

T—>0](S)
S— ¢|TS . Unambiguous

22

Examples

» L =setof all valid regular expressions over {0, 1}

An ambiguous grammar (start symbol S, = ={@,e,0,1,+,*,(,)}):
S—>0|e|0|1|(S)|S*|SS|S+S

An unambiguous grammar for a subset of regular expressions:
S—>0|e|0][1][(S)|(S*)](SS)]|(S+S)

Exercise: An unambiguous grammar
for all valid regular expressions

Proving Correctness of Grammars

Claim: Let L={wl#ow)=#(w)}. Then, L(G) =L where
the productions of G are: S — 051 | 150 | SS | ¢

Challenge: Give an
unambiguous grammar

Proof: Need to prove both L(G) € L and L(G) 2 L.

Prove L(G) € L by induction on the length of derivations
(or height of parse trees)

Prove L(G) 2 L by induction on the length of strings.

23

Proving Correctness of Grammars

Claim: Let L={wl#(w)=#(w) }. Then, L(G) = L where
the productions of G are: S — 051 | 150 | SS | ¢

Proof: Proving L(G) € L by induction on the length of derivations.

Let w € L(G). S ='w for some ¢ > 1. Induction on ¢ to show that w € L.

24

25

Proving Correctness of Grammars

Claim: Let L={wl#w)=#(w) }. Then, L(G) = L where
the productions of G are: S — 051 | 150 | SS | €

Proof: Proving L(G) € L by induction on the length of derivations.

Let w € L(G). S ='w for some ¢ > 1. Induction on ¢ to show that w € L.
Base case: r=1. Only string derived is €. v

Induction step: Consider ¢ > 1. Suppose all us.t. S =>%u, k<t in L.

Let w be suchthatS =2'w. i.e., S= a1 ="w.

Case a1=05S1: w=0ul and S=! u. By IH, #o(u)=#1(u).

Hence #o(w) = #o(u)+1 = #1(v)+1 = #1(w). (Case a1=150 is symmetric.)
Case ai=SS: w=uv and S="u, S=>"v,1 <m,n<t(m+n=t-1). By IH,
#Ho(u)=#1(u) & #o(v)=#1(v). Hence #o(w) = #o(u)+#o(v) = #1(u)+#1(v) = #1(w)

Proving Correctness of Grammars

Claim: Let L ={wl#w)=#(w) }. Then, L(G) =L where
the productions of G are: S — 051 | 150 | SS | €

Proof: Proving L(G) 2 L by induction on the length of strings.

Suppose w € L. To show by induction on |w| that w € L(G).

26

27

Proving Correctness of Grammars

Claim: Let L ={wl#w)=#(w) }. Then, L(G) =L where
the productions of G are: S — 051 | 150 | SS | €

Proof: Proving L(G) 2 L by induction on the length of strings.

Suppose w € L. To show by induction on |w| that w € L(G).
Base cases: [w|=0. e €L(G). v No string with |w|=1 in L(G). Vv

Induction step: Let n=2. Suppose u € L(G) for all u € L with |u| < n.

Letw € L be such that |w|=n; i.e., #o(w)=#1(w).

Case w=0ul: Thenu €L and |u| < n. By IH, u € L(G). i.e., S="u.
Hence, S = 051 =" Oul = w. (Case w=1u0 is symmetric.)
Case w=0u0: Let di = #o(i-long prefix of w) — #1(i-long prefix of w).

Thendi=1,d.=0,dp-1=-1.503 1 <m=<n-1s.1,dn.=0.1€., w=xy, where
x|, |y| < |w|, and x,y € L. By IH, x,y €L(G). Hence S = SS =" xy = w.
(Case w=1ul is symmetric.)

Proving Correctness of Grammars

Often will need to strengthen the claim to include strings
generated by every variable in the grammar

Claim: Let L ={wl#w)=#(w) }. Then, L(G) = L where
productions of G are:

S— AB|BA]|¢

A—O|AS|SA

B—1|BS|SB

Stronger Claim:

A derives all strings w s.t. #o(w) = #1(w)+1.
B derives all strings w s.t. #1(w) = #o(w)+1.
S derives all strings w s.t. #o(w) = #1(w).

28

Closure Properties for CFL

Union: If L1 and L, are CFLs, sois L1 U L.

Let Gi1 = (Z, V1, P1,S1), G2 = (Z, V2, P2, S2) with Vi n V2 = @.
LetG=C,V,P,S)with V=V UV>U {S}, and
P=PUP>U{S — S1|S2}. Then L(G) = L(G1) U L(G2).

Concatenation: If 1., and I, are CFLs, sois Li Lo,
Let Gi1 = (Z, Vi1, P1,S1), G2 = (Z, V2, P2, S2) with Vi n V2 = @.
LetG=C,V,P,S)with V=ViI UV>U {S}, and
P=PrUP>U{S — S1S2}. Then L(G) = L(G1) L(G?).

Kleene Star: If L1 is a CFL, so is Li*.
Let G1 =(Z, V1, P1, S1).
LetG=C, V,P,S)with V=V U{S}, and
P=P; ({S —¢elSS1}. Then L(G) = L(G1)*.

29

Closure Properties for CFL

CFLs are not closed under intersection or complement

Intersection: L1 = { 0'V0* | i=j } & L1 = { 0'1/0* | j=k } are CFLs.
But it turns out that Lin L> = { 0°170* | i=j=k } is not a CFL!

Complement: If CFLs were to be closed under
complementation, since they are already closed under
union, they would have been closed under intersection!

30

Grammars

Rewriting rules tfor generating strings from a “seed”

In an “unrestricted” grammar, the rules are of the form
a— pwherea, f (XU V)*

Context-Free Grammar: Rewriting rules apply to
individual variables (with no “context”)

,/—”’,’/'All languages

Languages with
algorithms/unrestricted grammars

Context Free Languages

Regular Languages

31

