
Turing Machines

Lecture 9

1



Course Trajectory

In algorithms, we see what can be done.

But what cannot be done?

2



3

• A program is a finite bit string

• Programs can be enumerated — listed 
sequentially — (say, lexicographically) so 
that every program appears somewhere in 
the list

• The set of all programs is countable.

1 ε

2 0

3 1

4 00

5 01

6 10

7 11

8 000

9 001

10 010

Computation
Problem:

To compute a function F that 
maps each input (a string) to 

an output bit

Program:
A finitely described process 
taking a string as input, and 

outputting a bit (or not halting)

P computes F if for every x, P(x) outputs F(x) and halts



4

• A function assigns a bit to each finite string

• Corresponds to an infinite bit string

• The set of all functions is uncountable!

• As numerous as, say, real numbers
in [0,1]

1 ε 0

2 0 0

3 1 1

4 00 0

5 01 1

6 10 1

7 11 0

8 000 0

9 001 1

10 010 1

Computation
Problem:

To compute a function F that 
maps each input (a string) to 

an output bit

Program:
A finitely described process 
taking a string as input, and 

outputting a bit (or not halting)

P computes F if for every x, P(x) outputs F(x) and halts



5

There are uncountably many 
functions!

But only countably many 
programs

Almost every function is uncomputable!
(non constructive proof)

Computation
Problem:

To compute a function F that 
maps each input (a string) to 

an output bit

Program:
A finitely described process 
taking a string as input, and 

outputting a bit (or not halting)

P computes F if for every x, P(x) outputs F(x) and halts



Course Trajectory

We will be looking at what can be computed at all?

What cannot be decided (undecidability)

6



What about a particular 
problems?

• Given program P, input w:

7

Will halt or run into an infinite 
loop?

Halting problem!

w P



Halting Problem Undecidable
• Given program P:

8

P P

• Write a program that decides if a program halts.

• Dual view of program as program and as data.



Alas!

There is no program that solves the Halting 
Problem!

Way to view code as data allows 
diagonalization proof.

10



Computing
What does it mean to compute something?

“There is no algorithm for the halting problem”

What does it mean for something to be an algorithm 
formally?

Then I can say “For all algorithms…”

11



A Brief History of Computing
• Leibnitz (circa 1600): Believed in universal 

language for encoding any problem (math, 
philosophy, religion).

• Thought if you properly encode any problem in 
binary form, there is a way to calculate an 
answer (run the algorithm)

12

calculemus!



A Brief History of Computing
• Babbage (circa 1860): built Difference and 

Analytical Engine (Add, multiply, etc).
• It marks the transition from mechanised 

arithmetic to fully-fledged general purpose 
computation. 

• Hypothesized that any mathematical question 
can be answered by the analytical engine, 
suitably encoded.

13



A Brief History of Computing
• Hilbert (circa 1900): What can we prove in 

mathematical world?
• Proving and computing almost identical, proof= trace 

the program.
• The Entscheidungsproblem (descision problem): is 

there an algorithm that takes as input a statement of 
a first-order logic and answers "Yes" or "No" 
according to whether the statement is universally 
valid, i.e., valid in every structure satisfying the 
axioms.

14

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/First-order_logic


A Brief History of Computing

• Gödel: no! there is no such 
algorithm

• Church: better way to prove it with 
functional programming

15



Alan Turing
• British mathematician

– cryptanalysis during WWII

– arguably, father of AI, CS Theory

– several books, movies

• Mathematically defined computation 

– Invented Turing Machines at 23 (1936). Turing 
machines can compute everything that is computable. 
He proved that The Halting Problem has no general 
algorithm (it is not possible to decide whether a turing 
machine will ever halt)

17



Computation
• Computers were people at that time!

• The way people do math is write-erase-throw away.

• Turing proposed to abstract this process.

18



Turing Machine



Turing Machine

Finite alphabet

Read

Write

Move +1 or -1

Halt condition



Turing Machine

Finite alphabet

Read

Write

Move +1 or -1

Halt condition

Internal state (finite number)

Was designed as a model of human 
computation but it models computers as 
we know them

Finite number of 
internal states



Why do we care?

• I need a model of computation that is simple 
enough to convince you that a TM can take as 
input a description of a TM and simulate it.

• Python interpreter in Python? Harder to explain 
Python semantics

• Will be able to define “what can we compute?”



TM for Decision Problems
M = (Q, Σ, Γ, B, δ, qstart,, qaccept, qreject):

Γ is a finite tape alphabet.

- B or ⌷ is the blank symbol (special symbol)

- Σ is a finite input alphabet Σ ⊆ Γ\ B

Q is a finite set of states

qstart ∈ Q is the initial state

qaccept, qreject ∈ Q accept/reject states

Or maybe run forever

24



TM for Decision Problems
M = (Q, Σ, Γ, B, δ, qstart,, qaccept, qreject):

Γ is a finite tape alphabet.

- B or ⌷ is the blank symbol (special symbol)

- Σ is a finite input alphabet Σ ⊆ Γ\ B

Q is a finite set of states

qstart ∈ Q is the initial state

qaccept, qreject ∈ Q accept/reject states

Or maybe run forever

Transition function: δ : Q × Γ (read) → Q × Γ (write) × { L, R }
25



0 1 0 1 1

Turing Machine

tape = string in Γ* followed by infinite stream of ⌷

we will treat 011111=011111 ⌷ ⌷ ⌷ ⌷…

configuration = state, string (content of tape), and 
integer (position of tape).  (Q,x,i) ∈ Q x Γ*x N

e.g. (pink, 01011, 5)

pink



Configuration = ID (Instantaneous 
Description)

Contains all necessary information to capture the
“current configuration of the computation”

state, tape-contents & head-location

Easy-to-read notation: (q,xay,i)

Initial ID:  (qstart ,⟨input⟩,0)
27

x ∈ Γ* : tape contents left of the head
q ∈ Q  : state
y ∈ Γ* : tape contents at & right of the head  

(till last non-blank)

a: symbol TM is 
about to read



Relations ⇒ & ⇒* on IDs

ID1 ⇒ ID2 iff ID1 evolves into ID2 in one step.

e.g., if  δ(q, ai) = (qʹ,b, L), then
(q,a1 a2… ai-1 ai ai+1… an, i) ⇒ (qʹ,a1 a2… ai-2ai-1 b ai+1… an ,i-1)

28

current ID next ID

⇒* is the reflexive & transitive closure of ⇒
Thus, ID1 ⇒* ID2 iff M, when run from ID1, reaches ID2

after some finite number (0 or more) of moves



0 1 0 1 1

Accept/Reject

In DFAs it was clear when to accept an input string or reject 
it. 

TM can:

• go back and forth over the input

• overwrite the input 

• write on the tape way past the end of the input 

• need an explicit state 



Definition of Acceptance
M accepts w iff (qstart ,w, 0) ⇒*  (qaccept,x,i)

for some x  ∈ Γ*
Note that M is allowed to accept w without scanning all of w

L(M) = {w | M accepts w}

M does not accept w if starting from the ID qstart w :

1. M halts in qreject, or
2. M crashes (head moves off the tape), or
3. M never stops

30



Deciding/Recognizing a Language

L(M) = {w | M accepts w}

is called the language recognized by M

M decides L(M) if on input w ∉ L, M halts in qreject

If a TM decides the language it recognizes, 
then, on every input, it halts in qaccept or qreject

Easy to change “crashes” to rejects 

But turns out the we can’t avoid infinite 
executions! (can’t tell if it is going to be infinite)

31



Deciding/Recognizing a Language

L(M) = {w | M accepts w}

is called the language recognized by M

M decides L(M) if on input w ∉ L, M halts in qreject

Fundamental questions of computability:

Which languages are recognizable?

Which languages are decidable?

32

Recursively
Enumerable
Language

Recursive
Language



Example

q2

q3

q4

q1

0 / 0ʹ, R 
1 / 1ʹ, R 

_ / _, L 

0 / 0, L 
1 / 1, L 

0ʹ / 0, R 

1ʹ / 1, R 

0 / 0, R 
1 / 1, R 

0 / 0, R 
1 / 1, R 

_ / 0, L 

_ / 1, L 

Input alphabet : Σ = {0,1}

Tape alphabet : Γ = {0,1,0ʹ, 1ʹ, _}

What does this TM do?



0 0 1 _ _ _ _ _ _ _ _
Example

q1

0ʹ 0 1 _ _ _ _ _ _ _ _

0ʹ 0ʹ 1 _ _ _ _ _ _ _ _

0ʹ 0ʹ 1ʹ _ _ _ _ _ _ _ _
0ʹ 0ʹ 1ʹ _ _ _ _ _ _ _ _q2

0ʹ 0ʹ 1 _ _ _ _ _ _ _ _
0ʹ 0ʹ 1 1 _ _ _ _ _ _ _
0ʹ 0ʹ 1 1 _ _ _ _ _ _ _
0ʹ 0 1 1 _ _ _ _ _ _ _

q4
q2

0ʹ 0 1 1 _ _ _ _ _ _ _
0ʹ 0 1 1 _ _ _ _ _ _ _
0ʹ 0 1 1 0 _ _ _ _ _ _
0ʹ 0 1 1 0 _ _ _ _ _ _
0ʹ 0 1 1 0 _ _ _ _ _ _

q3

q2

0ʹ 0 1 1 0 _ _ _ _ _ _

Input alphabet : Σ = {0,1}

Tape alphabet : Γ = {0,1,0ʹ, 1ʹ, _}

q2

q3

q4

q1

0 / 0ʹ, R 
1 / 1ʹ, R 

_ / _, L 

0 / 0, L 
1 / 1, L 

0ʹ / 0, R 

1ʹ / 1, R 

0 / 0, R 
1 / 1, R 

0 / 0, R 
1 / 1, R 

_ / 0, L 

_ / 1, L 



0 0 1 _ _ _ _ _ _ _ _
Example

q1

0ʹ 0 1 1 0 _ _ _ _ _ _

0 0 1 1 0 _ _ _ _ _ _
0 0 1 1 0 _ _ _ _ _ _

0 0 1 1 0 _ _ _ _ _ _

0 0 1 1 0 _ _ _ _ _ _

0 0 1 1 0 _ _ _ _ _ _

…

q2
q3

0 0 1 1 0 0 _ _ _ _ _q2
0 0 1 1 0 0 _ _ _ _ _
0 0 1 1 0 0 _ _ _ _ _
0 0 1 1 0 0 _ _ _ _ _
0 0 1 1 0 0 _ _ _ _ _

Maps w to wwR

Next?

Input alphabet : Σ = {0,1}

Tape alphabet : Γ = {0,1,0ʹ, 1ʹ, _}

q2

q3

q4

q1

0 / 0ʹ, R 
1 / 1ʹ, R 

_ / _, L 

0 / 0, L 
1 / 1, L 

0ʹ / 0, R 

1ʹ / 1, R 

0 / 0, R 
1 / 1, R 

0 / 0, R 
1 / 1, R 

_ / 0, L 

_ / 1, L 
Crashes! Head moves out of the tape.



What does this TM do?

42



What does this TM do?

43

pstart

p0

p1

phalt
0/$,R

1/$,R

0/0,R

1/1,R

1/0,R 0/1,R

_/1,L

_/0,L



0 0 1 _ _ _ _ _ _ _ _
Example

q1

0ʹ 0 1 1 0 _ _ _ _ _ _

0 0 1 1 0 _ _ _ _ _ _
0 0 1 1 0 _ _ _ _ _ _

0 0 1 1 0 _ _ _ _ _ _

0 0 1 1 0 _ _ _ _ _ _

0 0 1 1 0 _ _ _ _ _ _

…

q2
q3

0 0 1 1 0 0 _ _ _ _ _q2
0 0 1 1 0 0 _ _ _ _ _
0 0 1 1 0 0 _ _ _ _ _
0 0 1 1 0 0 _ _ _ _ _
0 0 1 1 0 0 _ _ _ _ _

Maps w to wwR

Next?

Input alphabet : Σ = {0,1}

Tape alphabet : Γ = {0,1,0ʹ, 1ʹ, _}

q2

q3

q4

q1

0 / 0ʹ, R 
1 / 1ʹ, R 

_ / _, L 

0 / 0, L 
1 / 1, L 

0ʹ / 0, R 

1ʹ / 1, R 

0 / 0, R 
1 / 1, R 

0 / 0, R 
1 / 1, R 

_ / 0, L 

_ / 1, L 
Crashes! Head moves out of the tape.



Avoiding Crashing

Given M (that may crash), an “equivalent” Mʹ
which goes to qreject instead of crashing

Idea: Rewrite input w to be $w, place the head on the 
first symbol of w and run M. If head ever scans $, 

move to qreject (and move the head right)

45

q0pstart

p0

p1

p2
0/$,R

1/$,R

0/0,R

1/1,R

1/0,R 0/1,R
$/$,R

0/0,L
1/1.L

_/1,L

_/0,L



Shifting by k Positions
Can do “shift-by-1” k times. But k scans of tape.

To shift by k positions to the right in a single scan: 
Remember last k symbols. Overwrite current cell 

with symbol from k cells behind

47

pstart

p0

p1

0/$,R

1/$,R

$/$,R

0/0,L
1/1.L

p00

p11

p01

p10

pʹ0

pʹ1

0/$,R

1/$,R

1/$,R

_/0,R

_/1
,R _/1,R

_/0,R

_/0,R

_/1,R

0/1,R

1/0,R

pʹʹ0

pʹʹ1

1/$,R _/1,R

_/0,R

_/$,R

_/$,R

1/1,R

0/0,R

1/0,R

0/1,R

0/
0,

R

1/
1,

R



Binary Addition
L = { x#y#z | x, y, z ∈ {0,1}*, |x|=|y|=|z|, x+y=z in binary }

Plan: 

48

0 1 # 0 1 # 1 0 _ _ _

$ 0 1 # 0 1 # 1 0 _ _

:

carry c=1$ 0 # @ 0 # @ 1 _ _ _

:

carry c=0$ # @ @ # @ @ _ _ _ _

:

shift

check LSB

check MSB

:

carry c=0

check finished



Binary Addition
L = { x#y#z | x, y, z ∈ {0,1}*, |x|=|y|=|z|, x+y=z in binary }

Shift input w to make it $w.
Scan the tape to ensure w matches (0+1)*#(0+1)*#(0+1)*
Return head to the left end (right of $)  
(In finite memory, carry-bit c initialized to 0)
Repeat

copy the digit to the left of first # into finite state, and 
overwrite it with # (replace old # by @). If no digit there, 
accept if carry is 0 & no digits left; else reject.
copy the digit to the left of second # into finite state, and 
move # left (replace old # by @). If no digit there, reject.
check if the right most digit is “correct”. Reject if no digit or 
if it is not correct; else erase digit and update carry. 
Move head to the left end (right of $)

49



50

q0

Shift 
&

Format
Check $/$,R

0 / 0, R 
1 / 1, R 

#/@, L 

0 / 0, R 
1 / 1, R 

#/@, L 0 /#,R 

@ / @, R 1 /#,R 

0 /#,R 

0 / 0, R 
1 / 1, R 

@ / @, R 

_/_, L 

@ / @, L 

0 / _, L 

0 / 0, L 
1 / 1, L 

# / #, L 

$/$,R

1 /#,R 
$/$,R

Verify finished
& Accept

c=0

x=0

x=1

y=0

y=1

c=1



What can a TM do?
Can shift by any number i, by keeping 2i states to 
remember what were in the first i places of the 
tape.

Can do simple arithmetic operations, addition, 
multiplication etc.

51



L={ 0i1j0k | i=j=k } is not a CFL!

Can be decided by TM (see notes)

52

What can a TM do?



A TM can do everything that can be done in a 
standard programming language

(and vice versa)

53

What can a TM do?


