
Turing Machines, contd.

Lecture 10

1

Turing Machine

Finite alphabet

Read

Write

Move +1 or -1

Halt condition

Internal state (finite number)

Finite number of
internal states

TM for Decision Problems
M = (Q, Σ, Γ, B, δ, qstart,, qaccept, qreject):

Γ is a finite tape alphabet.

- B or ⌷ is the blank symbol (special symbol)

- Σ is a finite input alphabet Σ ⊆ Γ\ B

Q is a finite set of states

qstart ∈ Q is the initial state

qaccept, qreject ∈ Q accept/reject states

Or maybe run forever

Transition function: δ : Q × Γ (read) → Q × Γ (write) × { L, R }
3

TMs: what we saw and will see

• They are quite tedious to program, but possible!
(it’s the assembly language version)

• They can do anything a computer can do (copy,
shift, add…)

• e.g. RAM

4

• Will see that a TM can simulate itself. Write a TM
interpreter in TM!

• Universal TM.

5

TMs: what we saw and will see

• Church-Turing Thesis:

“Any physically realizable model of computation is
equivalent to a TM”

• More of a physical law than a math theorem.

• e.g. Python doesn’t have additional power over TM.

• sounds fancy but it says no more than “a Python
interpreter can compute anything you can compute in
Python”

6

TMs: what we saw and will see

• Church-Turing Thesis:

“Any physically realizable model of computation is
equivalent to a TM”

• There are models of computation not equivalent to
TM, we won’t see them this semester.

7

TMs: what we saw and will see

Variants/Extensions

Adding more capabilities to TMs make them easier to
program

But doesn’t change what TMs can do:
whatever the new variant can do, can be simulated

in the original variant
(with a lot more steps, sometimes)

8

Extension: multiple tracks

9

0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape à

M can address any particular track in the cell it is scanning

4 tracks

0

$

a

1

1

b

1

0

b

2

0

0

c

1

a a a

Can simulate multiple tracks with a single track
machine, using extra “stacked” characters:

single new
character

Extension: multiple tracks

10

0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape à

M: δ(q, -,0,-,-) = (p, -,-,-,1, R)

4 tracks

Then in Mʹ δ(q,) = (p, , R)
x

0

y

z

x

0

y

1

for every x, y, z ∈ Γ

“If in state q reading 0 on
second track, then go to state
p, write 1 on fourth track, and
move right”

Extension: multiple tracks

11

0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape à

M: δ(q, -,0,-,-) = (p, -,-,-,1, R)

4 tracks

“If in state q reading 0 on
second track, then go to state
p, write 1 on fourth track, and
move right”

Transition function:

δ : Q × Γ1 × Γ2 × Γ3 × Γ4 → Q × Γ1 × Γ2 × Γ3 × Γ4× { L, R }

Extension: multiple tracks

12

0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape à

M: δ(q, -,0,-,-) = (p, -,-,-,1, R)

4 tracks

“If in state q reading 0 on
second track, then go to state
p, write 1 on fourth track, and
move right”

Transition function:

δ : Q × (Γ1 × Γ2 × Γ3 × Γ4)→ Q × (Γ1 × Γ2 × Γ3 × Γ4)× { L, R }

Extension: multiple tracks

13

0 1 1 0 1

$.

Sometimes intuitively better with multiple tracks
e.g assume I want to copy this string.

0 1 1 0 1 0

$ $.

0 1 1 0 1 0 1

$ $ $.

0 1 1 0 1 0 1 1

$ $ $ $.

0 1 1 0 1

$ $.

0 1 1 0 1 0

$ $.

0 1 1 0 1 0

$ $ $.

0 1 1 0 1 0 1

$ $ $ $.

0 1 1 0 1 0 1 1

$ $ $ $ $

0 1 1 0 1 0 1 1 0

$ $ $ $ $

0 1 1 0 1 0 1

$ $ $.

0 1 1 0 1 0 1 1

$ $ $ $.

Extension: multiple tracks

14

Sometimes intuitively better with multiple tracks
e.g assume I want to copy this string.

0 1 1 0 1 0 1 1 0

$ $ $ $ $

0 1 1 0 1 0 1 1 0 1

$ $ $ $ $

Extension: multiple heads

15

Transition function:

δ : Q × Γ2→ Q × Γ2× {L, R}2

Snapshot of simulation (2 heads)

16

$ 0 0 1 1 0 1M

head 1

head 2

q1Single
move:
δ(q1,1,0)
= (q2,0,0,R,L)

Snapshot of simulation (2 heads)

17

$ 0 0 1 0 0 1M

head 1

head 2

q1Single
move:
δ(q1,1,0)
= (q2,0,0,R,L)

Snapshot of simulation (2 heads)

18

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 1 0 1
$ ✓
$ ✓Mʹ

head

q1Single
move:
δ(q1,1,0)
= (q2,0,0,R,L)

• Simulate with multiple tracks. Special mark on track 1 and
2 for head positions. Track 0 has input.

• Make sweeps over the entire tape

Snapshot of simulation (2 heads)

19

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 1 0 1
$ ✓
$ ✓Mʹ

head

q1Single
move:
δ(q1,1,0)
= (q2,0,0,R,L)

q1,1,0

1) Scan to the right to find the mark on track I
read the corresponding symbol from track 0 into our internal state,

and then return to the left end of the tape.

Snapshot of simulation (2 heads)

20

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 1 0 1
$ ✓
$ ✓Mʹ

head

q1Single
move:
δ(q1,1,0)
= (q2,0,0,R,L)

2) Using M’s transition function, the internal state records M’s
next state, the symbol to be written by each head,

and the direction to move each head.

\q1,1,0

Snapshot of simulation (2 heads)

21

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 0 0 1
$ ✓
$ ✓Mʹ

head

q1Single
move:
δ(q1,1,0)
= (q2,0,0,R,L)

q2,0,0

3) Scan to the right to find the mark on track i,
write the correct symbol onto on track 0,

move the mark on track i one step left or right,
and then return to the left end of the tape.

Snapshot of simulation (2 heads)

22

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 0 0 1
$ ✓
$ ✓Mʹ

head

q1Single
move:
δ(q1,1,0)
= (q2,0,0,R,L)

q2,0,0

3) Scan to the right to find the mark on track i,
write the correct symbol onto on track 0,

move the mark on track i one step left or right,
and then return to the left end of the tape.

Snapshot of simulation (2 heads)

23

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 0 0 1
$ ✓
$ ✓Mʹ

head

q1Single
move:
δ(q1,1,0)
= (q2,0,0,R,L)

q2,0,0

• Subroutine!
• However, seriously slows down the process

but we don’t care about running time right now

Extension: multiple tapes

k-tape TM
k different (2-way infinite) tapes

k different independently controllable heads
input initially on tape 1; tapes 2, 3, ..., k, blank.

Single move:
read symbols under all heads

print (possibly different) symbols under heads
move all heads (possibly in different directions)

go to new state
24

Extension: multiple tapes

25

Extension: multiple tapes

26

Canʹt compute more with k tapes

Theorem: If L is accepted by a k-tape TM M, then L
is accepted by some 1-tape TM Mʹ.

28

Idea: Mʹ uses k tracks to simulate tapes of M

BUT....
M has k heads!

How can Mʹ be in
k places at once?

Mʹ will use 2k tracks to simulate tapes+heads of M

Convention for TM

29

Input tape (read only, finite)

Work tape (read/write)

Output tape (write only)

Convention for TM

• Output doesn’t clash with input
• Don’t have to clean work tape
• Just remember to copy what I need to output tape

More convenient!

Extension: 2-Way Infinite Tape

31

How to do it with one infinite direction?

start

. . 0 1 1 0 1 0 1 0 . .

2-Way Infinite Tape: Folding

Simulating it in the original TM variant:

Modify transitions:
Remember in control if +ve or -ve side of tape

(contents of 0 cell will be marked).

If positive: R → RR & L → LL
If negative: R → LL & L → RR

At 0: R → R & L → RR

At 1?32

. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

0 1 -1 2 -2 3 -3 4 -4 5 -5 6 . . .

34

. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

0 1 2 3 4 5

2-Way Infinite Tape: multiple tracks

-1 -2 -3 -4 -5

35

. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

-5 -4 -3 -2 -1 0 1 2 3 4 5

2-Way Infinite Tape: shifting

36

. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

-5 -4 -3 -2 -1 0 1 2 3 4 5

2-Way Infinite Tape: shifting

When the machine reads write a blank, move right,
write a , move right and proceed as if we had read

a blank.

When the machine reads shift the entire contents of
the tape to the right. Move back to the , move right,
write a blank and proceed as if we had read a blank.

37

2-Way Infinite Tape: shifting
-5 -4 -3 -2 -1 0 1 2 3 4 5

When the machine reads shift the entire contents of
the tape to the right. Move back to the , move right,
write a blank and proceed as if we had read a blank.

-5 -4 -3 -2 -1 0 1 2 3 4 5-5 -4 -3 -2 -1 0 1 2 3 4 5

Subroutine calls

Mechanism for M1 to “call” M2 on an argument

Goal:

I need to be able to do two things:

• push(q) :push the state in some stack, save it.

• pop(q): pop whatever state is on top of stack and
make it current state.

38

call

return

Subroutine calls
Implement the Stack with a new tape

39

0 1 1 0 0 1 1

q r p q r

stack tape

• For push, write a new symbol to stack and move R
• For pop read symbol, write blank, move head L

Subroutine calls

• Recursion (e.g. Fibonacci)

• Can take existing TMs and call them as
subroutines.

• Call = jump to start state of the TM subroutine

• Halt = return

40

Random Access Memory (RAM)

• By definition can only access memory directly
under the head.

• How to do associative memory?

• Memory is made up from pairs [key,value]

• key ∈ {0,1}*, value ∈ {0,1}*

41

Random Access Memory (RAM)

• Would like a subroutine that starts with “key”
written at the beginning of a tape and ends with
“value” written at the beginning of the same tape

42

k e y

v a l u e

for any key a most one value

Random Access Memory (RAM)

43

[k e y , v a l u e] [k e y , v a l u e]

k e y

Ram tape

Address tape

v a l u e

Value tape

Σ= {[] , 0 1}

Random Access Memory (RAM)

• If I have an RAM also that runs in time T(n), I can
simulate it in one tape, one head,one track TM in
time T(n)2

44

Universal Turing Machine
• "Turing machine interpreter written in Turing machine".

• Just as the input to a Python interpreter is a string of
Python source code, the input to our universal Turing
machine U is a string �M,w� that encodes an arbitrary
Turing machine M and a string w in the input alphabet of
M.

• Given these encodings, U simulates the execution of M on
input w; in particular,

• U accepts �M,w� if and only if M accepts w.

• U rejects �M,w� if and only if M rejects w.

45

Universal Turing Machine

• How to encode a Turing Machine as a binary
string:

• 01|Γ|01|Σ|01|Q|0[….] where [….] is some
encoding (brute force) of all possible
transitions as pattern of bits.

• Encode the tape as a bit string: (e.g. tape
alphabet of 3 symbols {a,b,c})

0 0 0

46

1 1 1

:tape was bac

