Uv\ci@.«tt&c&ab&m:v 11



Example of Undecidable Languag ‘©

SELFREJECT = { <M> | M rejects <M> }

M =Turing Machine (piece of executable code)
<M> = encoding of M as a string (source code for M)
<M> is what you would feed to a universal TM,
that would allow it to simulate M.

(e.g. TM that rejects everything.

TM that rejects every description of a TM are in that language



Showing Undecidability

0 show L Is undecidable, reduce some undecidable language t

SELFHALT = { <M> | M halts on <M>}

Claim: SELFHALT is undecidable

More general looking problem:
HALT ={ <M,w>|M haltsonw}

Claim: HALT is acceptable

The halting problem
Claim: HALT is undecidable



Showing Undecidability

HALT ={ <M,w>|M halts on w }
Claim: HALT is undecidable
Proof:

Suppose (towards contradiction) that there is a TM H that

decides HALT. Reduce from SELFHALT




NEVERACCEPT ={ <M> | ACCEPT(M)=¢ }

(1s a TM useless or not?)

Claim: NEVERACCEPT is undecidable



How many Turing Machines? ®

e Fixa TM M and an input w.
e Build a new TM M’ with the following behavior:

« M’ accepts its input iff M accepts w. (toss input out the
window)

e Pseudocode :




How many Turing Machines? ®

e Fixa TM M and an input w.
e Build a new TM M’ with the following behavior:

« M’ accepts its input iff M accepts w. (toss input out the
window)

e Pseudocode : / acc




How many Turing Machines? ®
e Fixa TM M and an input w.
e Build a new TM M’ with the following behavior:

« M’ accepts its input iff M accepts w. (toss input out the

window)
e Pseudocode : // acc
M
AN re]
/A
\_/

w hardcoded and M hardcoded in M’




o Build M™?

Write a program
Input <M,w>: M - Turing Machine,
W - string
Output <M’>: M’ - Turing Machine,

s.t. for any string x, M" accepts x ift M accepts w.

« could produce M’ ourselves (write pseudocode).
So far, when we talk about reduction, WE are doing the reductic
« Now, we need to describe how to do this transformation
e Dy writing code that performs the transtormation



NEVERACCEPT ={ <M> | ACCEPT(M)=¢ }

(M accepts nothing)
Claim: NEVERACCEPT is undecidable

We will assume we know the following:

ACCEPT = { <M,w> | M accepts w } 1s undecidable
Proot:

Suppose (towards contradiction) that there is a TM NA that
decides NEVERACCEPT.

10



NEVERACCEPT ={ <M> | ACCEPT(M)=¢ }

Claim: NEVERACCEPT is undecidable
Proof:

Suppose (towards contradiction) that there is a TM NA that
decides NEVERACCEPT.

<M> adCC

w re

11



NEVERACCEPT ={ <M> | ACCEPT(M)=¢ }

Claim: NEVERACCEPT is undecidable
Proof:

Suppose (towards contradiction) that there is a TM NA that
decides NEVERACCEPT.

<M>

12



13

NEVERACCEPT ={ <M> | ACCEPT(M)=¢ }

Claim: NEVERACCEPT is undecidable
Proof:

Suppose (towards contradiction) that there is a TM NA that

decides NEVERACCEPT.
how many TMs?

,dCC

<M>




when | design a compiler for a piece of code,
| can’t worry about the input that this code will be
fed many many years from now.
X and w not related!

_acc

<M>

re

14



NEVERACCEPT = { <M> | ACCEPT(M)=¢ }
Claim: A decides ACCEPT

. Case 1: M accepts w.

15



NEVERACCEPT = { <M> | ACCEPT(M)=¢ }
Claim: A decides ACCEPT

. Case 1: M accepts w.
Implies M" accepts everything (by def. of M’).

Implies M’ not in NEVERACCEPT (by def of NEVERACCEPT)
Implies NA rejects <M’'> (by def of NA)

Implies A accepts <M,w> (by def of A)

16



NEVERACCEPT = { <M> | ACCEPT(M)=¢ }
Claim: A decides ACCEPT

- Case 2: M doesn’t accept w.

17



NEVERACCEPT = { <M> | ACCEPT(M)=¢ }
Claim: A decides ACCEPT

- Case 2: M doesn’t accept w.
Implies M’ doesn't accept anything (by def. of M").
Implies M’ in NEVERACCEPT (by def of NEVERACCEPT)
Implies NA accepts <M’> (by def of NA)

Implies A rejects <M,w> (by def of A)

These two cases are exhaustive and imply A decides
ACCEPT, contradiction

18



NEVERACCEPT := {(M
NEVERREJECT := {(
NEVERHALT := {(M
(

NEVERDIVERGE ;= { M

AccepT(M) = @}
ReEJECT(M) = @}
Hart(M) = @}
DIVERGE(M ) = @}




DIVERGERSAME = { <M1><M2> | DIVERGE(M1)
=DIVERGE(M?2) }
Claim: Undecidable




Theorem 14. The language DIVERGESAME := {(Ml) (M) | DivErGE(M;) = DIVERGE(MZ)} is unde-
cidable.

Proof: Suppose for the sake of argument that there is a Turing machine DS that decides
DivERGESAME. Then we can build a Turing machine N D that decides NEVERDIVERGE as follows.
Fix a Turing machine Y that accepts X* (for example, by defining 6 (start,a) = (accept, -, ) for
all a € T'). Given an arbitrary Turing machine encoding (M) as input, ND writes the string
(M)(Y) onto the tape and then passes control to DS. There are two cases to consider:

e If DS accepts (M)(Y), then DIVERGE(M ) = DIVERGE(Y ) = &, so (M) € NEVERDIVERGE.
o If DS rejects (M)(Y), then DIVERGE(M ) # DIVERGE(Y ) = &, so (M) & NEVERDIVERGE.

In short, ND accepts (M) if and only if (M) € NEVERDIVERGE, which is impossible. We conclude
that DS does not exist. O



Rice’s Theorem

« We want to answer questions of the form “does the language this
machine accepts have some interesting property?”

« L={set of acceptable languages that is not empty and is not the set
of all languages}

e €.g. L = setof all languages containing the word “surfing”
« Define ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

L =g: ACCEPTIN(@) is decidable (always say no, no language is
element of @)

o L= everything: ACCEPTIN(all) is decidable (always say yes: does
this TM accept a language?)

e For every other L ACCEPTIN(L) is undecidable

22



Rice’s Theorem

Rice’s Theorem. Let £ be any set of languages that satisfies the following conditions:
e There is a Turing machine Y such that Accepr(Y) € L.
* There is a Turing machine N such that Accepr(N) & L.

The language AccepTIN(L) := {(M ) | Accepr(M) € L} is undecidable.

To Show ACCEPTIN(L) 1s undecidable

Reduce from HALT = { <M,w>| M halts on w }



Rice’'s Theorem
» ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}
HALT ={ <M,w>|M haltson w}

<M>




Rice’'s Theorem
» ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}
HALT ={ <M,w>|M haltson w}

<M>

s

M halts on W iff ACCEPT(WTF) is in L



Rice’s Theorem ‘

 ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}
HALT ={ <M,w>|M haltson w}

<M>

M halts on w iff ACCEPT(WTF) is in L

26



Rice’s Theorem ‘

 ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}
HALT ={ <M,w>|M haltson w}

<M>

M halts on w iff ACCEPT(WTF) is in L
Assume ¢ not in L. Let Y be a TM so that ACCEPT(Y) in L

27



Rice’s Theorem ‘

« ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}
¢ not in L

acc

/

ACCEPT(Y) in L

N\

rej

<M>

28



Rice’s Theorem
 ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}
¢ not in L

acc

/

ACCEPT(Y) in L

N\

rej

<M>

if M halts on w then WTF(x) is Y(x) and

ACCEPT(WTF)=ACCEPI(Y) in L, AIL accepts
1f M doesn't halt on w then WTF(x) never halts

so ACCEPT(WITF)=¢, not in L, AIL rejects

29



Rice’s Theorem ‘

« ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}
¢ not in L

acc

/

ACCEPT(Y) in L

N\

rej

<M>

H accepts <M ,w> iif H halts on w!

contradiction

30



Rice’s Theorem

Rice’s Theorem. Let L be any set of languages that satisfies the following conditions:
* There is a Turing machine Y such that Accepr(Y) € L.
® There is a Turing machine N such that AccepT(N) & L.

The language AccepTIN(L) := {(M ) | Accepr(M) € L} is undecidable.

o example: {<M>| M accepts the empty string}

31



Rice’s Theorem

Rice’s Theorem. Let L be any set of languages that satisfies the following conditions:
e There is a Turing machine Y such that Accepr(Y ) € L.
® There is a Turing machine N such that AccepT(N) & L.

The language AccepTIN(L) := {(M ) | Accepr(M) € L} is undecidable.

o example: {<M>| M accepts the empty string}

Let L be the set of all languages that contain the empty string.

Then Acceptin(L) ={ {M) | M accepts given an empty initial
tape}.

32



Rice’s Theorem

Rice’s Theorem. Let L be any set of languages that satisfies the following conditions:
e There is a Turing machine Y such that Accepr(Y ) € L.
® There is a Turing machine N such that AccepT(N) & L.

The language AccepTIN(L) := {(M ) | Accepr(M) € L} is undecidable.

o example: {<M>| M accepts the empty string}

Let L be the set of all languages that contain the empty string.
Then Acceptin(L) ={ {M) | M accepts given an empty initial
tape}.

« M1 accepts nothing : empty string Is
not in @

« M2 accepts everything: empty string Is
33 in S*



Rice’s Theorem

Rice’s Theorem. Let L be any set of languages that satisfies the following conditions:
* There is a Turing machine Y such that Accepr(Y) € L.
® There is a Turing machine N such that AccepT(N) & L.

The language AccepTIN(L) := {(M ) | Accepr(M) € L} is undecidable.

example: {<M>| M accepts regular language}

34



Rice’s Theorem

Rice’s Theorem. Let L be any set of languages that satisfies the following conditions:
e There is a Turing machine Y such that Accepr(Y ) € L.
® There is a Turing machine N such that AccepT(N) & L.

The language AccepTIN(L) := {(M ) | Accepr(M) € L} is undecidable.

o example: {<M>| M accepts the empty string}

Let L be the set of all regular languages. Then Acceptin(L) = {
(M) | M accepts a regular language}.

35



Rice’s Theorem

Rice’s Theorem. Let L be any set of languages that satisfies the following conditions:
e There is a Turing machine Y such that Accepr(Y ) € L.
® There is a Turing machine N such that AccepT(N) & L.

The language AccepTIN(L) := {(M ) | Accepr(M) € L} is undecidable.

o example: {<M>| M accepts the empty string}

Let L be the set of all regular languages. Then Acceptin(L) = {
(M) | M accepts a regular language}.

« M1 accepts O*
e M2 accepts {0"1M:n>0}

36






Rice’s Rejection Theorem. Let L be any set of languages that satisfies the following conditions:
e There is a Turing machine Y such that Reject(Y) € £
e There is a Turing machine N such that ResecT(N) & L.

The language REJECTIN(L) := {(M ) | RejeECT(M) € L} is undecidable.

Rice’s Halting Theorem. Let £ be any set of languages that satisfies the following conditions:
e There is a Turing machine Y such that HALT(Y ) € £
e There is a Turing machine N such that HALT(N) ¢ L.

The language HALTIN(L) := {(M ) | Harr(M) € L} is undecidable.

Rice’s Divergence Theorem. Let £ be any set of languages that satisfies the following conditions:
e There is a Turing machine Y such that DIvERGE(Y ) € L
e There is a Turing machine N such that DIVERGE(N ) & L.

The language DIVERGEIN(L) = {(M ) | DIVERGE(M ) € L} is undecidable.

Rice’s Decision Theorem. Let £ be any set of languages that satisfies the following conditions:
e There is a Turing machine Y such that decides an language in L.
e There is a Turing machine N such that decides an language not in L.

The language DecipeIn(L) := { (M) | M decides a language in £} is undecidable.



—Xerclse:

The language L := {(M W) | M accepts w* for every integer k > 0} is undecidable.



