T and NP

P=NP?

o We talked about machines that accept sets of strings

« Best to think of a language in terms of a YES/NO
guestion

« P =YES/NO qguestions that can be answered in
polynomial time in input size (algorithm)

e.qg. is this array sorted? O(n) time

is N prime”? (log N bits input)

P=NP?

« NP= Non-deterministic Polynomial Time

e Something to do with Non-Deterministic TM

« YES/No problems where YES instance can be verified
In polynomial time

e.g. is this array sorted? verity by running O(n) algorithm

or something not so clear how to find from scratch: does this
graph have Hamiltonian cycle?

We do not know if this is in P.

Can check short proof = Non-deterministic choices.

P=NP?

« Asymmetry: how can | convince you that there Is
no Hamiltonian cycle”

we don’t know! check all n vertex cycles.

NP only requires that if the answer is YES | can convince
you in polynomial time.

If answer is NO : ummm...

If problem is in P?

P=NP?

« Million Dollar qguestion: P=NP?

» Of course not!
o Clay math institute: 7 most important problems.

e P=NPisnumber 1. ($1M)

o It would imply: It there is a short proot, there is an
easy way to discover it... Trivialize math.

In a search problem, given an input x € {0,1}* we want to compute some answer
y € {0,1}* that is in some relation to z, if such a y exists. Thus, a search problem
is specified by a relation R C {0,1}* x {0,1}*, where (z,y) € R if and only if y is an
admissible answer given .

a..-.a.rl L VL A ‘-V‘-‘-O\J‘--ﬂ- v .

We denote by P the class of decision problems that are solvable in polynomial time.

We say that a search problem defined by a relation R is a NP search problem if the
relation is efficiently computable and such that solutions, if they exist, are short. Formally,
R is an NP search problem if there is a polynomial time algorithm that, given z and v,
decides whether (z,y) € R, and if there is a polynomial p such that if (z,y) € R then
yl < p(|z)).

We say that a decision problem L is an NP decision problem if there is some NP relation
R such that x € L if and only if there is a y such that (x,y) € R. Equivalently, a decision
problem L is an NP decision problem if there is a polynomial time algorithm V(-,-) and
a polynomial p such that x € L if and only if there is a y, |y| < p(|z|) such that V (z,y)
accepts.

We denote by NP the class of NP decision problems. The class NP has the following
alternative characterization, from which it takes its name. (NP stands for Nondeterministic
Polynomial time.)

Theorem 1 NP s the set of decision problems that are solvable in polynomial time by a
non-deterministic Turing machine.

Exercise ‘

Show that NP is the set of decision problems solvable
INn poly time by a non deterministic TM.

Problem in NP ‘

« Problem in NP. It is the "worst problem™ in NP

10

Problem in NP ‘

« Problem in NP. It is the "worst problem™ in NP

11

Problem in NP ‘

« Problem in NP. It is the "worst problem™ in NP

.

Y
v QY

12

Problem in NP

« Problem in NP. It is the "worst problem”™ in NP

.

>

YUY

Circuit Satisfiability:
Given a boolean circuit are there inputs the produce output 17
Obvious O(2"n) algorithm, brute force
Best known algorithm O(2"/n)

13

Problem in NP

« Problem in NP. It is the "worst problem”™ in NP

i o
e) s
. >0

It | can solve CircuitSat in P,
then every other problem in NP has
a polynomial time algorithm!
Levin, Cook

14

Cook Levin

Cook-Levin Theorem:
CircuitSAT is NP-hard.

Cook-Levin Theorem:
If CircuitSAT in P then P=NP

15

Cook Levin Proof? Non-
deterministic TMs

proof tape p\r input tape
| | b |

| |
work tape

Verity it input is YES Iin p time =
'S there a string to put in the proot tape to make this TM
to accept in poly time?

Build a circuit that simulates that TM

16

Cook Levin Proof? Non-
deterministic TMs

e e

]
O

—
1
—h

Cook Levin Proof? Non-
deterministic TMs

fix
s there a proof iInput
t=0 | |
=0 | 1 |
!
t=0 | |

0/

18

Mickey Mouse Diagram

Problem is NP hard it a poly time algorithm for that problem
implies P=NP.

53
v NP-complete

1)

CircuitSAT NP Hard

Every NDTM that accepts some language, equivalent to a circu
It | can solve Circuitsat in poly time,
then | can solve any other problem in NP

Step 1: Build giant circuit
Step 2: pass it to the CircuitSAT algorithm
Step 3: profit

20

Mickey Mouse Diagram @

“‘,— CircuitSAT
.v NP-complete

NP hardness

e Assume P=NP

« [hen NP hard means no polynomial time algo!

« Example of reduction: formula SAT

« [he only problem we know is NP hard is
CircuitSAT, so let’'s reduce from that.

22

Formula SAT

nput: boolean formula
Want to decide if there is an assignment to the
variables that make it TRUE

(avbVvcecvd)e (bAS)V(@a=>d)V(c#aAb)),

Assume, towards contradiction that SAT can
be solved in poly time

23

24

NP hardness

o Poly time reduction from CircuitSAT.

o |fthereis a po
SAT, then the

y time algorithm to so

e IS poly time algorith
CircuitSAT

ve formula

M to solve

Formula SAT

| am given input a circuit and | want to produce an
equivalent formula.
How is the circuit given?
Name the inputs, wires, output.

/)

>0
. I>OT23_ Y3
>0

25

Formula SAT

| am given input a circuit and | want to produce an
equivalent formula.
How is the circuit given?
Name the inputs, wires, output.

/)) D

(Y1 =X1 AX) AN (Y2 =X)A(y3=x3AY2) A(¥a=Y1V X3) A
(Vs =X)A (Y6 =Xs)A(Y7=Y3VYs)ANEZ=YsANY7 NYe) N2

26

NP hardness

. There are inputs to the circuit that force z t be true if =
and only It there are values to these variables that
make the expression true

e | have reduced CircuitSat to formula SAT

e Proof? 2 stages

- Stage 1: Suppose | can satisty the circuit, then | can
find corresponding values for all the wires, same
values satisty the formula

. Stage 2: Suppose | can satisfy the formula, | can pull
those values to the wires

27

NP hardness

o Poly time reduction from CircuitSAT.

« |f there is a poly time algorithm to solve formula
SAT, then there is poly time algorithm to solve

CircuitSAT
CIRCUITSAT
TRUE TRUE
SAT ® is K is
K transform d satisfiable satisfiable
'
Boolean H Boolean
circuit me formula FALSE FALSE
t

@ is not K is not

satisfiable satisfiable

28

24)

NP hardness

o Poly time reduction from CircuitSAT.

« |f there is a poly time algorithm to so
SAT, then there is poly time algorith
CircuitSAT

ve formula

M to solve

CiRcUITSAT(K):

return SAT(®)

transcribe K into a boolean formula &

((Magic!l))

Tcircurrsat(n) < 0(n) + Tsar(O(n))

30

How to prove NP hardness
« [0 prove X Is NP-hard:

. Step 1: Pick a known NP-hard problem Y

.- Step 2: Assume for the sake of argument, a

polynomial time algorithm for X.

. Step 3: Derive a polynomial time algorithm for Y,

using algorithm for X as subroutine.

. Step 4: Contradiction Reduce FROM the problem

| know about

Reduce Y to X TO the problem
| am curious about

NP hardness ‘

o Library of NP-hard problems

F S T P S~ o SIS

" CircuitSAT

SA

f

Let’'s assume the problem Is easy
and see what ridiculous conseguences follow

31

3SAT ‘

e |.ook at boolean formulas in CNF

clause

/_/% - -
(avbvcvd)A(bvcVvd)A(@aveVvd)A(aV b)

Parse tree:

3SAT: exactly three
/N iterals per clause!

SN

NNV N\
/1N

a b cC

32

NP hardness

o Poly time reduction from CircuitSAT.

« |f there is a poly time algorithm to solve formula
3SAT, then there is poly time algorithm to solve

CircuitSAT
CIRCUITSAT
TRUE TRUE
@ is Kis
K transform satisfiable satisfiable
in O(n)
Boolean t
circuit me FALSE FALSE >
@ is not K is not
satisfiable satisfiable

33

1. Make sure every AND and or gate in K has exactly two inputs. If any gate has k > 2

inputs, replace it with a binary tree of k — 1 two-input gates. Call the resulting
circuit K’.

2. Transcribe K’ into a boolean formula ®, with one clause per gate, exactly as in our
previous reduction to SAT.

3. Replace each clause in ®; with a CNF formula. There are only three types of clauses
in ®,, one for each type of gate in K’:

a=bAc — (avbVvié)Aa(avb)Aa(aVve)
a=bVec — (@vbvc)A(avb)A(aVvi)

a=b — (avVb)A(aVvb)

Call the resulting CNF formula &,.

4. Replace each clause in ®, with a 3CNF formula. Every clause in ¢, has at most three
literals. We can keep the three-literal clauses as-is. We expand each two-literal
clause into two three-literal clauses by introducing a new variable. Finally, we

expand any one-literal clause into four three-literal clauses by introducing two
new variables.

aVb— (avbVx)A(aVbVx)
a—(aVxVy)A(avxVy)A(avVxVy)A(avVxVy)

Call the final 3CNF formula ®5.

For example, if we start with the same example circuit we used earlier, we obtain the
following 3CNF formula &5.

Call the final 3CNF formula &5.

For example, if we start with the same example circuit we used earlier, we obtain the
following 3CNF formula &5.

(V1VXI VX)) AL VX VZ) AT VX VED ALV XaVZ) A(Y1V X4V 25)
AN(Y2VxaVz3)A(yaVxaVz3) A(YaVXaV2) Ay V XaV2,)
AN(YsVx3VY) A3V x3Vzs)A(Y3Vx3V25)A(Y3VyaVze) A(Y3VyaV26)
ANYaVY1VX)A(YaVXaV2)A(yaVXaV2)A(YaVY1V2Zg) A(YaV y1V2g)
A5V xaV29) A(ysVxaV29) A(YsVXaV210) AYs VXV 2)

A(YeV x5V2z11)A(YeVx5V211) A6V X5V 212) A(Y6 V X5V 212)

A7V ysVys)A(y7VYsVzi3) A(y7VY3VZ13) A(y7VYsV21a) A7V Y5V 214)
AN(YgVYsVY7)AN(YeVysaVzis)AN(YgVyaV215) A(Yg VY7 V216) A(YgV Y7V Z16)
ANYoVYsVYe)AN(YoVygV217) A(YoVysV2Z17) A(Yo VY6 V218) A(YoV Y6 V Z18)
A (Yo V219V 290) A(Y9 V219V 220) AYg V219V 290) A(Yo V219V 250)

Although this formula may look a lot more ugly and complicated than the original circuit
at first glance, it’s actually only a constant factor larger—every binary gate in the original

