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Abstract

We show that any problem that has a classical zero-knowledge protocol against the honest verifier
also has, under a reasonable condition, a classical zero-knowledge protocol which is secure against all,
possibly cheating classical and quantum polynomial time verifiers. Here we refer to the generalized
notion of zero-knowledge with classical and quantum auxiliary inputs respectively.

Our condition on the original protocol is that, for positive instances of the problem, the simulated
message transcript should be quantum computationally indistinguishable from the actual message tran-
script. This is a natural strengthening of the notion of honest verifier computational zero-knowledge,
and includes in particular, the complexity class of honest verifier statistical zero-knowledge. Our result
answers an open question of Watrous [Wat06], and generalizes classical results by Goldreich, Sahai and
Vadhan [GSV98], and Vadhan [Vad06] who showed that honest verifier statistical, respectively compu-
tational, zero-knowledge is equal to general statistical, respectively computational, zero knowledge.



1 Introduction

One of the main impacts of quantum computation thus far has been its potential implications for cryptogra-
phy. Public key cryptography, a central concept in cryptography, is used to protect web transactions, and its
security relies on the hardness of certain number theory problems. Exponential speedups by quantum com-
puters have been found for problems such as factoring and discrete log [Sho97], Pell’s equation [Hal02],
and for finding the unit group and class group of a number field [Hal05, SV05]. This implies that a quan-
tum computer could break RSA and Diffie-Hellman, which are currently used, as well as potentially more
secure systems such as the Buchmann-Williams key-exchange protocol [SBW94]. Understanding which
cryptosystems are secure against quantum computers is one of the fundamental questions in the field.

Another central concept in cryptography is that of a zero-knowledge protocol. These protocols allow
a prover to convince a verifier about the truth of a statement without revealing any additional information
about the statement, even if the verifier cheats by deviating from the prescribed protocol. For a nice overview
of definitions and facts about zero-knowledge we refer the reader to [Gol01]. In practice, zero-knowledge
protocols are used as primitives in larger cryptographic protocols in order to limit the power of malicious
parties to disrupt the security of the larger protocol. For example, at the start of a secure online transaction
Alice may be required to prove her identity to Bob. She does this by by demonstrating that she knows a
particular secret which only she is supposed to know. However, Alice wants to prevent the possibility of
Bob committing identity theft, that is, Bob should not be able to masquerade as Alice later on. Thus, Bob
should gain no information about Alice’s secret even if he acts maliciously during the identity verification
protocol.

With the advent of quantum computation an important question rears its head: what happens to classical
zero-knowledge protocols when the cheating verifier has access to a quantum computer? Note that even if
the verifier cheats quantumly, the messages exchanged with the prover and the prover itself continue to be
classical. Thus, the prover does not know if it is interacting with a classical or quantum verifier. One may
expect that quantum computers can break some classical zero-knowledge protocols, i.e. a quantum verifier
interacting with the prover may be able to extract information about from the message transcript (sequence
of all messages exchanged) that a classical verifier cannot. As one example, the Feige-Fiat-Shamir [FFS88]
zero-knowledge protocol for identity verification can be broken by a quantum computer simply because it
relies on the hardness of factoring for security.

Watrous [Wat06] recently showed that two well-known classical protocols continue to be zero-knowledge
against cheating quantum verifiers. In particular, he showed that the graph isomorphism protocol of Gol-
dreich, Micali and Wigderson [GMW91] is secure, and also that the graph 3-coloring protocol in [GMW91]
is secure if one can find classical commitment schemes that are concealing against quantum computers.
However, the general question of which classical zero-knowledge protocols continue to be secure against
cheating quantum verifiers was left open by Watrous.

In this paper, we answer this question for a large family of classical protocols. We show that all protocols
that are honest verifier zero-knowledge (HVZK) and satisfy some reasonable assumption on their simulated
transcripts can be made secure against all efficient classical and quantum machines. More specifically, any
protocol which is honest verifier statistical zero-knowledge (HVSZK) can be transformed to be statistical
zero-knowledge against all classical and quantum verifiers (SZKQ). Also, any protocol which is honest
verifier computational zero-knowledge and has classical message transcripts of the interaction between the
prover and the honest verifier that yield no information to an efficient quantum machine (HVCZKq), can be
transformed to be computational zero knowledge against all classical and quantum verifiers (CZKQ). Note
that classically it was shown that any language in HVCZK also has a protocol which is zero-knowledge
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against any cheating verifier (the class CZK).
As in the classical case, by starting with fairly weak assumption on protocols, we show that a much

stronger protocol exists. Note that being zero-knowledge against quantum verifiers does not imply be-
ing zero-knowledge against classical verifiers owing to a technical requirement in the definition of zero-
knowledge to be elucidated later. The significance of our result is that we give a single classical protocol
zero-knowledge against both types of verifiers. Our work substantially generalizes both of Watrous’ re-
sults [Wat06].

Formally, a protocol is said to be zero-knowledge if for every non-uniform polynomial time verifier there
is a non-uniform polynomial time simulator that can produce, for inputs in the language, a simulated view of
the verifier that is indistinguishable to the verifier’s view in an actual interaction with the prover. The view
of the verifier consists of the message transcript together with the internal state of the verifier, and represents
what the verifier can ‘learn’ from interacting with the prover. The existence of a polynomial time simulator
for every polynomial time verifier captures the intuition that the verifier learns nothing that it could not have
learned on its own from the input, even by being malicious. For a classical verifier the simulator is required
to be classical. For a quantum verifier the simulator is quantum. Thus, zero-knowledge against quantum
verifiers does not immediately imply zero-knowledge against classical verifiers.

Constructing a simulator appears to be counterintuitive since it seems to replace the role of the prover
who is usually assumed to be computationally unbounded whereas the simulator is polynomial time. The
difference between the prover and the simulator is that the prover has to respond to verifiers queries in an
‘online’ fashion, that is immediately, whereas the simulator can work ‘offline’ and generates the messages
‘out of turn’, as well as ‘rewind’. By rewinding, we mean a simulator runs parts of the verifier during
the simulation and produces a fragment of the conversation that has some desired property with a certain
probability. If the simulator fails then it rewinds, that is it just runs the part of the verifier again from scratch.
In the quantum case one would have a quantum simulator using the quantum verifier to produce such a
fragment of the conversation and attempting to rewind if it fails.

Protocols that are classically zero-knowledge are not necessarily zero-knowledge against quantum ver-
ifiers. In the two problems graph Isomorphism and graph 3-Coloring that Watrous [Wat06] studied, the
essential difference between classical and quantum simulators comes from one additional requirement of
zero-knowledge protocols. In order for zero-knowledge protocols to sequentially compose, which is essen-
tial to achieve reasonable error parameters as well as ensure the security of the protocol when used as part of
a larger cryptographic system, the simulator must still work when the simulators and verifiers are given an
arbitrary auxiliary state. This is a natural requirement if one considers that, for example, perhaps the verifier
has interacted with the prover already to compute some intermediate information modeled by the auxiliary
state, and now during the next interaction it gains even more information. In the quantum case the auxiliary
state is an unknown quantum state. But unknown quantum states cannot be copied, and measurements of
unknown quantum states are irreversible operations in general, and as pointed out by Watrous [Wat06], even
determining if the simulator was successful in producing a fragment of the conversation with the desired
property may destroy the state. Therefore the simulator cannot trivially rewind since it cannot feed the aux-
iliary state into the verifier a second time if the state was destroyed during the first attempt at simulation.
Nevertheless, Watrous [Wat06] showed that it is possible to quantumly rewind in a clever way in the case of
Goldreich, Micali and Wigderson’s [GMW91] classical zero-knowledge protocols for graph isomorphism
and graph 3-coloring.

When searching for more classical zero-knowledge protocols that are secure against quantum cheating
verifiers there are new difficulties not encountered by Watrous [Wat06]. One restriction of the protocols he
analyzes is that they are three-round public coin protocols where the second message is O(log n) uniformly
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random bits from the verifier. This leaves out many languages in SZK and CZK including the complete
problems statistical difference [SV03] and entropy difference [GV97] for SZK. In a different vein [Wat02,
Wat06], Watrous shows that every problem in SZK has a quantum protocol that is statistical zero-knowledge
against any cheating non-uniform polynomial time quantum verifier. However, it is preferable that the
protocols themselves are classical since they can be implemented using current technology yet remain secure
against all potential quantum attacks in the future. In this paper, we show that a large class of polynomial
round, polynomial verifier message length classical zero-knowledge protocols can be made secure against
cheating quantum verifiers.

Classically, the construction of zero-knowledge protocols has been greatly simplified by showing that
HVSZK or HVCZK is equal to SZK or CZK [GSV98, Vad06]. Concretely, if one can design a protocol
for a given language that is zero-knowledge against (only) the honest verifier, which is typically much easier,
then there is also a protocol for the language that is zero-knowledge against an arbitrary cheating verifier.
We follow this approach: we show that if one can find a classical protocol zero-knowledge for just the
honest (classical!) verifier such that the actual and simulated message transcripts with respect to the honest
verifier are indistinguishable by polynomial sized quantum circuits, then there is also a classical protocol
that is zero-knowledge against all classical and quantum cheating verifiers. More precisely, our results can
be stated as:

Theorem 1 (Main). 1. SZK = HVSZK = SZKQ, where SZKQ is the class of languages with a
classical protocol that is statistical zero knowledge against all classical and quantum verifiers.

2. HVCZKQ = CZKQ = CZKQ. Where HVCZKQ (resp. CZKQ) is the class languages
with a classical protocol that is honest verifier computational zero-knowledge (resp. computational
zero-knowledge) and for YES instances,the classical message transcripts of the interaction between
the prover and the honest verifier are quantum computationally indistinguishable from the simulated
message transcripts. Similarly, CZKQ is the class of languages with a classical protocol that is
computational zero knowledge against all classical and quantum verifiers.

We note that the classical results HVSZK = SZK and HVCZK = CZK are known and can be
found in Goldreich, Sahai and Vadhan [GSV98] and Vadhan [Vad06].

By slightly abusing terminology, here and in what follows we interchangeably use the terms ‘efficient
machine’, ‘verifier’, to refer to non-uniform polynomial time machines, either classical or quantum.

1.1 Overview of our proof: ideas and difficulties

Damgård, Goldreich and Wigderson [DGW94] gave a method, hereafter called DGW, for transforming any
classical constant round public-coin honest verifier zero-knowledge protocol into another classical constant
round public-coin protocol that is zero-knowledge against all classical verifiers. We first observe that Wa-
trous’ quantum rewinding trick [Wat06] can be used to show that the new protocol resulting from DGW
is secure against all quantum verifiers also. This allows us to handle protocols with verifier messages of
polynomial length. The shortcoming is that, as in the classical case, the quantum simulator succeeds in al-
most correctly simulating the prover-verifier interaction with non-negligible probability only if the original
protocol has a constant number of rounds. This arises from the fact that the classical and quantum simu-
lators from DGW ‘rewind from scratch’, that is, they attempt to simulate all the rounds of the protocol in
one shot, and if they fail, they rewind the verifier to the beginning of the protocol. The success probability
of one attempt at simulation drops exponentially in the number of rounds, and hence, we can only handle a
constant number of rounds using the DGW transformation.
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Building on Damgård et al.’s work, Goldreich, Sahai and Vadhan [GSV98] gave a method, hereafter
called GSV, for transforming any classical public-coin HVZK protocol into another public-coin protocol
ZK against all classical verifiers. Their transformation handles protocols with a polynomial number of
rounds. However, one cannot apply Watrous’ quantum rewinding technique [Wat06] to the new protocol
resulting from GSV for the following technical reason: the simulator for the new protocol rewinds the
new verifier polynomial number of times for each round. In order to do the same thing quantumly using
Watrous’ rewinding lemma, one needs that for most messages of the verifier in the original protocol, the
success probability of the simulation attempt conditioned on the old verifier’s message be independent of
the quantum auxiliary state. Unfortunately this cannot be ensured for any message of the verifier in the
original protocol, and hence, we are unable to show that GSV makes the protocol secure against cheating
quantum verifiers.

Our main crucial observation is that if the honest-verifier simulator for the original classical public coin
ZK protocol uses its internal randomness in a ‘stage-by-stage’ fashion, then applying DGW gives a new
protocol which is zero-knowledge against all classical and quantum verifiers. This is still the case even
the original protocol has a polynomial number of rounds. The main reason is that the classical or quantum
simulator for the new protocol can rewind the verifier polynomial number of times within each round, where
each iteration preserves the simulated message transcript of the earlier rounds and uses fresh random coins to
attempt to simulate the current round. Since the success probability of one simulation attempt for a round is
inverse polynomial, polynomially many rewinding steps will result in a successful simulation of the current
round with very high probability. This leads us to the question of which problems possess zero-knowledge
protocols with ‘stage-by-stage’ honest-verifier simulators.

Our final observation is that the standard technique of converting any public coin interactive protocol
into a zero-knowledge protocol [IY88, BGG+90] based on bit commitments actually gives rise to a new pro-
tocol with a round-by-round honest verifier simulator. Note that any interactive protocol can be converted
into a public coin protocol [GS89] where the messages of the verifier are uniformly distributed random
strings independent of the previous messages of the protocol, and the final decision of the verifier to accept
or reject is a deterministic function of the message transcript and the input. The only caveat is that the exis-
tence of bit commitment schemes seems to be conditional on the existence of one-way functions. However,
the recent work of Vadhan [Vad06], Nguyen and Vadhan [NV06] and Haitner and Reingold [HR]and Ong
and Vadhan [OV] gives a way of replacing standard bit commitments by instance-dependent bit commit-
ments, which exist unconditionally as shown by them. An instance-dependent bit commitment scheme is
a protocol which depends on the input instance to the problem such that the protocol is hiding on the bit
to be committed for positive instances of the problem and binding on the bit for negative instances of the
problem. Since the hiding and binding properties are not required to hold simultaneously, the need for un-
proven assumptions like the existence of one-way functions is avoided. Haitner et al. [OV] show that every
problem with an honest verifier zero-knowledge protocol gives rise to a public coin constant round instance
dependent bit commitment scheme which is statistically binding on the negative instances. For positive in-
stances, the hiding property of the commitment scheme is statistical if the original protocol is HVSZK, and
computational against polynomial sized classical circuits if the original protocol is HVCZK. We can show
that their proofs can be modified to ensure that the hiding property is computational against polynomial
sized quantum circuits if the original classical protocol is in HVCZKQ. Replacing the bit commitments
in the standard compilation of interactive proofs to zero-knowledge by instance dependent commitments
gives us a zero-knowledge protocol with an honest-verifier simulator that uses its internal randomness in
a ‘stage-by-stage’ fashion, where each stage consists of a constant number of rounds. Applying the DGW
transformation to such a protocol gives rise to a new public coin classical protocol zero-knowledge against
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all non-uniform polynomial time classical and quantum verifiers. That fact follows since the success prob-
ability of correctly simulating a stage in the new protocol continues to be inverse polynomial and also the
simulator for the new protocol can rewind in a stage-by-stage fashion.

2 Preliminaries

2.1 The DGW transformation

We denote a classicalN -round public-coin interactive proof system by (P, V ) : (α1, β1, ..., αN , βN ), which
means that in the round i, the (honest) classical verifier V sends a uniformly random string αi and the
(honest) classical prover P responds with a string βi, which in general is a function of the previous transcript
and the prover’s randomness. Without loss of generality, each αi has the same length s. Let t < s be
a positive integer. Damgård, Goldreich and Wigderson [DGW94] describe a family Fs,t of nearly s-wise
independent hash functions from {0, 1}s to {0, 1}t. Every function f ∈ Fs,t has a description of length s2

bits and for all y ∈ {0, 1}t, 1 ≤ |f−1(y)| ≤ (s−1)2s−t+1. Computing f−1(y) can be done in randomized
time polynomial in s and 2s−t. In DGW, s− t is taken to be logarithmic in the input length, so 2s−t will be
a polynomial in the input length. Using this family Fs,t, Damgård et al. describe a process to transform a
random message α ∈R {0, 1}s from the verifier in the original protocol, giving rise to a new protocol with
twice as many messages.

1. The verifier chooses f uniformly in Fs,t and sends it to the prover.

2. The prover chooses y uniformly in {0, 1}t and sends it to the verifier.

3. The verifier chooses α uniformly in f−1(y) and sends it to the prover.

As described, the second message of the verifier in the DGW transformation is not public coin. However,
it can be made public coin by letting the verifier send a random r ∈ ((s − 1)2s−t + 1)!, which the prover
interprets as the (r mod |f−1(y)|)th element of f−1(y). Note that since (s − 1)2s−t + 1 is polynomial in
the input size, r can be described using polynomially many bits. Henceforth, we shall assume that the new
protocol arising from the application of DGW is public coin but we shall continue to use the description of
DGW given above for simplicity.

Applying the DGW transformation to anN -round public coin protocol (α1, β1, ..., αN , βN ) gives a new
public coin protocol (f1, y1, α1, β1, ..., fN , yN , αN , βN ) where each βi is obtained in the same way as the
original prover does on seeing the previous (α1, ..., αi). The DGW transformation satisfies the following
soundness property which we will crucially use [DGW94].

Fact 1. Suppose the original N -round public coin protocol has the soundness error ε0, then the DGW
transformation gives a new public coin protocol with the soundness error ε1 = ε0 +N(2s2(t−s)/4 + 2−s).

For the completeness and zero-knowledge property of DGW, the reader is referred to [DGW94].

2.2 Stage-by-stage simulator

We now give the formal definition of the important notion of an interactive protocol possessing a ‘stage-by-
stage’ honest-verifier simulator, which is central to our work.
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Definition 1. Suppose (P, V ) is a classical public coin protocol withN stages, each stage i containing con-
stant number c of rounds (αi1, βi1, ..., αic, βic), where αij , βij are verifier’s, respectively prover’s messages
and all αijs are of the same length. We say that an honest-verifier simulator M is stage-by-stage if its inter-
nal random string r can be decomposed as r = r1◦· · ·◦rN such that in each stage i, the simulated messages
(α̂i1, β̂i1, . . . , α̂ic, β̂ic) are functions of r1, . . . , ri and the input alone, and for every fixed r1, . . . , ri−1, for
every j ∈ [c], for every fixed prefix (ᾱi1, β̄i1, . . . , ᾱi,j−1, β̄i,j−1) of the simulated transcript, the distribution
of α̂ij as ri varies is uniform.

Note that we do not assume anything about how the simulator uses its randomness in each stage; it
can be used arbitrarily. But since each stage only contains a constant number of rounds, rewinding to the
beginning of the stage is affordable while simulating the new protocol arising from the application of DGW.

2.3 Instance-dependent bit commitments

We recall the definition of instance-dependent bit commitment protocols [OV] which will be used in our
construction of interactive protocols with honest-verifier stage-by-stage simulators.

Definition 2. For a promise problem Π = (ΠY ,ΠN ), a classical public coin constant round instance-
dependent bit commitment scheme consists of a classical public coin interactive protocol Comx for every
x ∈ ΠY ∪ΠN between two parties called sender Sx and receiver Rx, with the following properties:

1. Protocol Comx has two stages, a commit stage and a reveal stage;

2. At the beginning of the commit stage, Sx gets a private input b ∈ {0, 1} which represents the bit he
has to commit to. The commit stage proceeds for a constant number of rounds, and its transcript cx;b
is defined to be the commitment to the bit b;

3. Later on, in the reveal stage, Sx reveals the bit b and sends another string dx;b called the decommit-
ment string for b. The receiver Rx accepts or rejects deterministically based on cx;b, b and dx;b.

4. Sender Sx and receiver Rx can be implemented in randomized time polynomial in |x|;

5. For all x ∈ ΠY ∪ ΠN , for all b ∈ {0, 1}, Rx accepts with probability 1 if both Sx and Rx follow the
prescribed protocol;

The scheme Comx is said to be exponentially binding statistically for all x ∈ ΠN , if for any, possibly
malicious, sender S∗x, there exists an exponentially small function ε(·) such that if c∗x denotes the commitment
obtained by the interaction of S∗x and (honest) Rx, the probability that there exist decommitment strings
d∗x;0, d∗x;1 in the reveal stage so that Rx accepts on c∗x, 0, d∗x;0 as well as c∗x, 1, d∗x;1 is less than ε(|x|). In
addition, the scheme Comx is said to be exponentially hiding statistically for all x ∈ ΠY if the views of Rx
when b = 0 and b = 1 have exponentially small total variation distance. Similarly, if the two views are
negligibly distinguishable by polynomial sized classical or quantum circuits, the scheme Comx is said to be
computationally, respectively quantum computationally, hiding.

3 Applying DGW to protocols with stage-by-stage simulators

In this section, we will show that applying the DGW transformation to a classical public coin interactive
protocol with a stage-by-stage honest verifier simulator results in a classical public coin protocol zero-
knowledge against all non-uniform polynomial time classical and quantum verifiers.
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Lemma 1. If a classical public-coin protocol P has a stage-by-stage honest-verifier simulator M such that
the simulated transcript is quantum computationally indistinguishable from the actual prover honest-verifier
interaction, then applying DGW to it gives a new classical public coin protocol P ′ with inverse polynomi-
ally larger soundess error that is computationally zero-knowledge against all non-uniform polynomial time
classical and quantum verifiers. If in addition P is statistical zero knowledge against the honest verifier, P ′

is statistically zero knowledge against all non-uniform polynomial time classical and quantum verifiers.

Proof. (Sketch) The claim about soundness error follows from Fact 1 with an appropriate setting of the
parameters of the DGW transformation. The zero-knowledge property crucially relies on the stage-by-stage
assumption and the zero-knowledge property of DGW. Below we sketch the main points of difference from
the standard classical setting.

First, the classical proof attempts to simulate all the rounds of the protocol failing which it rewinds from
scratch. Here, we do a stage-by-stage simulation, that is, we try to simulate all the rounds of one stage
failing which we rewind to the beginning of the stage only. The stage-by-stage property of the honest-
verifier simulator M allows us to do this, since rewinding to the beginning of stage i just means tossing
a fresh coin ri without disturbing the earlier coin tosses r1, . . . , ri−1. Since each stage consists of only a
constant number of rounds, the success probability of one attempt at simulating DGW on a stage is inverse
polynomial. Thus polynomially many rewinding steps for a stage suffices to simulate the stage successfully
with very high probability.

The second point of difference is that in the proof of security against quantum verifiers, we use Wa-
trous’ rewinding technique [Wat06] at the end of a stage. The reason this is possible is because the DGW
transformation ensures that the success probability of one attempt at simulation of a stage is independent of
the quantum auxiliary input. Combined with the observation above, this allows us to rewind a stage poly-
nomially many times without disturbing previous stages and ensure a successful simulation with very high
probability.

A formal proof of the classical and quantum parts of the above lemma theorem is given in the appendix.

4 Designing protocols with stage-by-stage simulators

In this section, we indicate how to design a classical public coin interactive protocol for any promise prob-
lem in HVSZK and HVCZKQ with perfect completeness, exponentially small soundness and possessing
a stage-by-stage honest-verifier simulator. For problems in HVSZK the simulated transcript will be expo-
nentially close in total variation distance to the actual transcript, and for problems in HVCZKQ the two
transcripts will be negligibly distinguishable against polynomial sized quantum circuits.

The following statement follows by modifying the arguments of Vadhan [Vad06]. But first, we have to
define the notion of a quantumly secure false entropy generator which is the natural quantum generalization
of a so-called false entropy generator [HILL99].

Definition 3. Let I ⊆ {0, 1}∗. For x ∈ I , a family Dx of probability distributions on {0, 1}m(|x|) is said
to be P -sampleable if there exists a probabilistic polynomial time algorithm whose output is distributed
according to Dx on input x. A P -sampleable family Dx is said to be a quantumly secure false entropy gen-
erator if there exists a family Fx of probability distributions on {0, 1}m(|x|) that is negligibly distinguishable
from Dx by polynomial sized quantum circuits such that H(Fx) ≥ H(Dx) + 1, where H(·) is the Shannon
entropy of a probability distribution.
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Lemma 2. Suppose a promise problem Π = (ΠY ,ΠN ) ∈ HVCZKQ. Then for every x ∈ ΠY ∪ΠN , there
is a P-sampleable probability distribution Dx on {0, 1}m(|x|), and a subset I ⊆ ΠY such that {Dx}x∈I is a
quantumly secure false entropy generator. Also, (ΠY \ I,ΠN ) ∈ HVSZK.

Proof. (Sketch) The proof follows by observing that the arguments of [Vad06] go through equally well
for quantum indistinguishability as for classical indistinguishability. Essentially, this is because the proof
of [Vad06] uses reducibility arguments where the computational hardness of a primitive is used as a black
box.

We need the following result about the existence of classical public coin constant round instance de-
pendent bit commitment protocols for problems in HVSZK by Haitner and Reingold [HR] and Ong and
Vadhan [OV].

Fact 2. Every promise problem in HVSZK gives rise to a classical constant round public coin instance
dependent bit commitment scheme that is exponentially hiding on the positive instances and exponentially
binding on the negative instances statistically.

Remark: In fact for our purposes, we do not really require the full strength of the above fact. A weaker
primitive of classical constant round public coin instance-dependent two-phase bit commitment scheme that
is statistically hiding on the positive instances and statistically 1-out-of-2 binding on the negative instances
suffices for us. Such schemes were first constructed by Nguyen and Vadhan [NV06]. However, our con-
struction of an interactive protocol with a stage-by-stage honest-verifier simulator is more complicated if we
use 1-out-of-2 binding schemes. Hence, we use the stronger scheme of the above fact in our proof.

Finally, we need the following statement which follows by modifying the arguments of Håstad, Impagli-
azzo, Levin and Luby [HILL99], and Naor [Nao91].

Lemma 3. Let I ⊆ J ⊆ {0, 1}∗. Suppose Dx, x ∈ J is a P-sampleable family of probability distributions
on {0, 1}m(x). Also, suppose Dx, x ∈ I is a quantumly secure false entropy generator. Then there is a
classical constant round public coin instance-dependent bit commitment scheme for all x ∈ J which is
exponentially binding statistically for all x ∈ J and quantum computationally hiding for all x ∈ I .

Proof. (Sketch) Same comment as in the proof of Lemma 2.

By combining Lemmas 2 and 3, and Fact 2, and using the techniques of Vadhan [Vad06], we can
conclude the following quantum analogue of results of Ong and Vadhan [OV].

Lemma 4. Every promise problem in HVCZKQ gives rise to a classical constant round public coin
instance dependent bit commitment scheme that is quantum computationally hiding on the positive instances
and exponentially binding statistically on the negative instances.

We are now finally in a position to show that every problem in HVCZKQ has a classical public coin
interactive protocol with a stage-by-stage honest verifier simulator. For the classical counterparts of the
proposition below, we refer the reader to [OV].

Proposition 1. Every promise problem Π = (ΠY ,ΠN ) in HVCZKQ has a classical public coin interac-
tive protocol with perfect completeness, exponentially small soundness and a stage-by-stage honest-verifier
simulator that produces simulated transcripts that are negligibly quantum computationally distinguishable
from the actual prover honest-verifier interaction transcripts. Moreover, if the problem is in HVSZK then
the resulting protocol is constant round and the simulated transcripts are exponential close in total variation
distance from the actual transcripts.
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Proof. We observe that the standard procedure for converting a classical interactive protocol P into a zero-
knowledge protocol P ′ using bit commitments [IY88, BGG+90] gives rise to a protocol with a stage-
by-stage honest verifier simulator. Here, we use the instance-dependent bit commitments guaranteed by
Lemma 4.

By the results of Furer et al. [FGM+89], and Goldwasser and Sipser [GS89], P can be assumed to be
public coin with perfect completeness and exponentially small soundness error.

We now briefly sketch the proof for the HVSZK case. For languages in SZK the guaranteed instance
dependent commitments are constant-round, statistically hiding on the yes instances and statistically binding
on no instances. Thus we can obtain a constant-round, public coin, honest verifier SZK protocol for any
SZK language with soundness inverse polynomial. The idea is roughly the following: SZK is contained
in AM, so the prover commits to the message he would have sent in the AM protocol. Then he proves in
zero-knowledge that the verifier would have accepted the prover’s message. Since we only require zero-
knowledge against the honest verifier, we can now repeat the protocol in parallel to get exponentially small
soundness error and at the same time preserve the number of rounds.

We next present a more formal proof for the HVCZK case. Let x be the input to the problem Π. In
P ′, the prover commits to his messages that he would have sent in P . For this, he runs copies of the bit
commitment protocol for x in parallel for each bit of a message of the prover of P . After the commitment
of each message of the prover of P , the verifier in P ′ just sends a uniformly random message independent
of the message transcript so far, as in P . After the commitment for the last round of P is over, the deci-
sion of whether the verifier of P ′ accepts or rejects is an NP-predicate determined by the input, prover’s
commitments and the verifier’s public coins. The prover of P ′ then attempts to convince the verifier of P ′

via the graph 3-coloring zero-knowledge protocol of Goldreich, Micali and Wigderson [GMW91] to accept
the input x. Again, several copies of the bit commitment protocol for x are run in parallel in order to keep
the number of rounds of the 3-coloring protocol constant. As originally described in [GMW91], the graph
3-coloring protocol is a 3-message protocol with one message from the verifier in which he sends along a
random edge of the graph. Since the graph in our application is implicitly defined by the earlier messages of
P ′ and the input, it is a variable quantity and this prevents the 3-coloring protocol from being public coin.
However, this shortcoming can be remedied easily in a manner akin to making the DGW transformation
public coin. If m is the number of vertices in the implicit graph, which can be assumed to be the same
irrespective of the input or the prior messages exchanged, the verifier just sends a random number between
1 and

(
m
2

)
! which the prover then interprets appropriately depending on the actual graph defined by the input

and prior messages of P ′. Since for any x, the bit commitment protocols are classical and public coin, P ′ is
a classical public coin protocol too.

Since for x ∈ ΠN , the bit commitment protocols for x have exponentially small binding error for any
prover, the soundness error of P ′ is bounded away from one by an inverse polynomial. Also, P ′ has perfect
completeness since the bit commitment protocols have perfect completeness for any x. We now discuss
the honest-verifier zero-knowledge property of P ′. The honest-verifier simulator for P ′ just commits to
the all-zeroes string from the prover’s side in every round, and at the end, simulates the graph 3-coloring
protocol of [GMW91] in a standard fashion. For x ∈ ΠY , the bit commitment protocols for x are quantum
computationally hiding, which proves that the simulated transcript for P ′ produced by the honest verifier
simulator is quantum computationally indistinguishable from the actual transcript of P ′ obtained via the
prover honest-verifier interaction. Since for any x, the bit commitment protocols are constant round, P ′

has a stage-by-stage honest verifier simulator where each stage is either a transformation of a round of P
or the final zero knowledge protocol for 3-coloring transformed by bit commitments for x. In either case,
each stage of P ′ consists of a constant number of rounds and the number of stages is one more than the

9



number of rounds of P . In fact in the simulated transcript of P ′, the probability distributions of the stages
corresponding to transformed rounds of P are independent of each other. The distribution of the last stage
of P ′ does depend on the previous stages, but nevertheless satisfies the conditions of the definition of stage-
by-stage simulation (Definition 1).

Parallely repeating P ′ polynomially many times gives a new protocol P ′′ with exponentially small
soundness error and other properties as claimed in the statement of the proposition.

Combining Lemma 1 together with Proposition 1, we prove the main theorem of the paper.
Theorem 1:HVCZKQ = CZKQ and HVSZK = SZKQ.
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[HILL99] J. Håstad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from any one-
way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[HR] I. Haitner and O Reingold. A new interactive hashing theorem. In Technical Report TR06-096,
Electronic colloquioum on Computational Complexity.

[IY88] R. Impagliazzo and M. Yung. Direct zero-knowledge computations. In Proceedings of
Crypto87, Lecture Notes in Computer Science, vol. 293, pages 40–51. Springer-Verlag, 1988.

[Nao91] M. Naor. Bit commitment using pseudorandom generator. Journal of Cryptology, 4:151–158,
1991.

[NV06] M-H. Nguyen and S. Vadhan. Zero knowledge with efficient provers. In Proceedings of the
38th Annual ACM Symposium on Theory of Computing, pages 287–295, 2006.

[OV] S. Ong and S Vadhan. An equivalence between zero knowledge and commitments. In TCC
2008, to appear.

[SBW94] R. Scheidler, J. Buchmann, and H. Williams. A key-exchange protocol using real quadratic
fields. Journal of Cryptology, 7(3):171–199, 1994.

[Sho97] P. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quan-
tum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.

[SV03] A. Sahai and S. Vadhan. A complete promise problem for statistical zero-knowledge. Journal
of the ACM, 50(2):196–249, 2003.

[SV05] A. Schmidt and U. Vollmer. Polynomial time quantum algorithm for the computation of the
unit group of a number field. In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, pages 475–480, 2005.

[Vad06] S. Vadhan. An unconditional study of computational zero knowledge. SIAM Journal on Com-
puting, 36(4):1160–1214, 2006.

[Wat02] J. Watrous. Limits on the power of quantum statistical zero-knowledge. In Proceedings of the
43rd Annual IEEE Symposium on Foundations of Computer Science, pages 459–468, 2002.

[Wat06] J. Watrous. Zero-knowledge against quantum attacks. In Proceedings of the 38th Annual ACM
Symposium on Theory of Computing, pages 296–305, 2006.

11



Appendix

A Proof for the quantum case of Lemma 1

In this section we will prove Lemma 1 for the quantum verifier. The case of classical verifier can be proved
in a similar fashion, as shown in the next section. Some notations are as follows: Unless otherwise stated,
the variable ij ranges over i ∈ [N ], j ∈ [c] (refer to Definition 1). Without loss of generality, by padding, we
assume that each ri is of the same lengthm and each αij is of the same length s. Denote the original protocol
by (P1, V1), and the new protocol obtained by applying DGW to (P1, V1) by (P2, V2). The honest-verifier
simulator for (P1, V1), M1, is stage-by-stage.

A.1 Quantum simulator: construction

Let x ∈ ΠY be the input to the problem. All operations taking place in the protocols as well as simulators
below depend on x, but for simplicity, we shall omit this dependence on x in the notation. Suppose |ψ〉 is
the auxiliary input to the cheating polynomial time quantum verifier V ′

2 in the new protocol. We can assume
that the auxiliary input is a pure state since otherwise we can take a purification of the auxiliary input as
we are consider a cheating verifier V ′

2 , and this cannot decrease the distinguishability between the simulated
and actual views of the verifier. Let V ′

2 use quantum register W as its work space and classical registers
{Fij , Yij , Aij , Bij}i∈[N ],j∈[c] as its message registers. Initially |ψ〉 is held in register Aux, which is a part of
W . At round ij, that is, the j-th round in stage i, suppose the message transcript so far is histij ; then V ′

2

performs on W a unitary transformation Uij,histij
followed by a measurement whose outcome fij is saved

in register Fij . Then V ′
2 sends this fij to P2, who chooses a random yij ∈ {0, 1}t, which is saved by V ′

2

in the register Yij . Then V ′
2 performs another unitary transformation Vij,histij ,fij ,yij

followed by another
measurement whose outcome αij is saved in register Aij and sent to P2, who replies with βij and finishes
the DGW transformation of the round ij. We require that αij ∈ f−1

ij (yij) without loss of generality.
Let Mij,histij ,fij

be the operation Uij,histij
followed by the projection on the subspace with the out-

come fij , so
∑

fij
Mij,histij ,fij

= Uij,histij
. Similarly, let Nij,histij ,fij ,yij ,αij

be the operation Vij,histij ,fij ,yij

followed by the projection on the subspace with the outcome αij .
We will define a simulator M ′

2, and then show the zero-knowledge property of (P2, V
′
2) by showing that

(P2, V
′
2)(|ψ〉〈ψ|) is negligibly distinguishable from M ′

2(|ψ〉〈ψ|), where the above notation denotes the view
of the verifier V ′

2 in the actual interaction (P2, V
′
2) and the simulated interaction M ′

2 respectively, with the
pure state |ψ〉 as auxiliary input.

We will first write down (P2, V
′
2)(|ψ〉〈ψ|). The probability distribution of βij in (P2, V

′
2) depends only

on the previous αi′j′s and is the same as in (P1, V1). We shall use PrP1 [(βij)ij | (αij)ij ] to denote the
probability of the sequence of βijs conditioned on a particular sequence of αijs. It is easy to see that

(P2, V
′
2)(|ψ〉〈ψ|) = 2−Nct

∑
(fij ,yij ,αij ,βij)ij

PrP1 [(βij)ij | (αij)ij ](
K(fij ,yij ,αij ,βij)ij

|ψ〉〈ψ|K†
(fij ,yij ,αij ,βij)ij(

|fij〉〈fij | ⊗ |yij〉〈yij | ⊗ |αij〉〈αij | ⊗ |βij〉〈βij |
)
ij

)
where the αij ranges over f−1

ij (yij), and

K(fij ,yij ,αij ,βij)ij
:= NNc,histNc,fNc,yNc,αNc

MNc,histNc,fNc
· · ·N11,f11,y11,α11M11,f11

12



is the operation M11,f11 followed by N11,f11,y11,α11 , then followed by M12,(f11,y11,α11,β11),f12 and followed
by N12,(f11,y11,α11,β11),f12,y12,α12

and so on, until finally finishing the whole transcript (fij , yij , αij , βij)ij .
The quantum simulator M ′

2 is defined in the following way. The work space of M ′
2 consists of register

W , which contains Aux, and registers {Fij , Yij , Aij , Bij}ij , as well as new registers {Ri}i, {A′
ij , F

′
ij}ij

for other purposes like randomness generation and backups. All the registers of M ′
2 described above are

quantum. The precise algorithm specifying M ′
2 is as follows. Since V ′

2 is a polynomial time machine, it is
easy to see that M ′

2 runs in polynomial time.

Quantum simulator M ′
2: Input x and auxiliary input |ψ〉

1. Initialize all registers with the all zero state |0〉 except Aux which contains |ψ〉;

2. for i = 1 to N

(a) Repeat the following loop N · 2c(s−t) times:

i. Generate a uniform superposition 2−m/2
∑

ri
|ri〉 in register Ri;

ii. Conditioned onR1, . . . , Ri’s content being r1, . . . , ri, runM1 to get (α̂i1, β̂i1, . . . , α̂ic, β̂ic)
and save them in the registers (A′

i1, Bi1, . . . , A
′
ic, Bic) respectively;

iii. for j = 1 to c
// Simulate the DGW transformation

A. Conditioned on the message registers’ content so far being histij , apply Uij,histij
to W .

Then conditioned on the current state in W being in the subspace corresponding to fij ,
write fij in the register Fij and F ′

ij ;
B. Conditioned on Fij containing fij and A′

ij containing α̂ij , compute yij = fij(α̂ij) and
write the result in Yij ;

C. Conditioned on the content of the message registers’ so far being (histij , fij , yij), apply
Vij,histij ,fij ,yij

to W . Then conditioned on the current state in W being in the subspace
corresponding to α′ij , write α′ij in the register Aij ;

// Check whether simulation for stage i succeeded and rewind if not
iv. If α̂ij 6= α′ij for some j ∈ [c], do the following:

A. Apply U †, where U is the unitary transformation corresponding to the execution from
Step 2(a)(i) till just before Step 2(a)(iv);

B. Reflect about the subspace

W ⊗ (⊗i′<i,j∈[c](Fi′jYi′jAi′jBi′jA
′
i′jF

′
i′jRi′))⊗ |0〉

where |0〉 is the all zero vector in ⊗i′≥i,j∈[c](Fi′jYi′jAi′jBi′jA′
i′jF

′
i′jRi′), that is, the

remaining registers of V ′
2 ;

C. Go to Step 2(a)(i);
v. Else, proceed to stage i + 1 in Step 2 since α̂ij = α′ij for all j ∈ [c] and the simulation of

stage i succeeded;

(b) Output Fail and terminate the whole simulation, as we have failed to simulate stage i success-
fully;

3. Trace out A′
ij , F

′
ij , Ri for all ijs and output the remaining registers;
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A.2 Quantum simulator: analysis

We now formally analyze the behavior ofM ′
2. Suppose in Step 2(a)(iv) ofM ′

2 instead of conditional rewind-
ing, we do a real measurement to see whether α̂ij = α′ij for all j ∈ [c]. Call this new machine conditioned
on all “equality” tests succeeding asM ′′

2 . We useM ′′
2 (|ψ〉〈ψ|) to denote the verifier’s view outputted byM ′′

2

on auxiliary input |ψ〉. We will show that M ′
2(|ψ〉〈ψ|) is exponentially close to M ′′

2 (|ψ〉〈ψ|) in trace dis-
tance, and (P2, V

′
2)(|ψ〉〈ψ|) is information theoretically or quantum computationally close to M ′′

2 (|ψ〉〈ψ|)
as appropriate.

We start by proving the following lemma.

Lemma 5. Fix coins r1, . . . , ri−1 of M ′′
2 . Let j ∈ [c]. Fix a prefix (f̄i′j′ , ȳi′j′ , ᾱi′j′ , β̄i′j′)i′j′<ij ◦ f̄ij of the

simulated transcript created by M ′′
2 ; the coin ri of M ′′

2 is allowed to vary conditioned on this prefix. Then,

1. PrM ′′
2
[α̂ij = α′ij ] = 2t−s;

2. For any ȳij ∈ {0, 1}t, PrM ′′
2
[f̄ij(α̂ij) = ȳij | α̂ij = α′ij ] = 2−t;

3. For any ȳij ∈ {0, 1}t, ᾱij ∈ f̄−1
ij (ȳij),

PrM ′′
2
[α̂ij = ᾱij | f̄ij(α̂ij) = ȳij , α̂ij = α′ij ] = PrV ′

2
[α′ij = ᾱij | yij ].

Proof. We use f , α̂, α′ and y as shorthands for f̄ij , α̂ij , α′ij and ȳij respectively. Then,

PrM ′′
2
[α′ = α̂] =

∑
y

PrM ′′
2
[f(α̂) = y]PrM ′′

2
[α′ = α̂|f(α̂) = y]

=
∑
y

PrM ′′
2
[f(α̂) = y]

∑
ᾱ∈f (−1)(y)

PrM ′′
2
[α′ = α̂ = ᾱ|f(α̂) = y],

where above and below, summation over y means summation over all y ∈ {0, 1}t. Note that for any fixed
transcript of the simulated messages so far and f , the simulation M ′′

2 has the property that α′ only depends
on y and not on which α̂ ∈ f (−1)(y). Therefore, conditioned on f(α̂) = y, the events α′ = ᾱ and α̂ = ᾱ
are independent. So

PrM ′′
2
[α′ = α̂]

=
∑
y

PrM ′′
2
[f(α̂) = y]

∑
ᾱ∈f (−1)(y)

PrM ′′
2
[α′ = ᾱ|f(α̂) = y] · PrM ′′

2
[α̂ = ᾱ|f(α̂) = y]

=
∑
y

PrM ′′
2
[f(α̂) = y]

|f−1(y)|
∑

ᾱ∈f (−1)(y)

PrM ′′
2
[α′ = ᾱ|f(α̂) = y]

=
∑
y

2−s|f−1(y)|
|f−1(y)|

= 2t−s.

Fix y = ȳij . Then,

PrM ′′
2
[f(α̂) = y | α̂ = α′] =

PrM ′′
2
[f(α̂) = y] · PrM ′′

2
[α̂ = α′ | f(α̂) = y]

PrM ′′
2
[α̂ = α′]

=
2−s|f−1(y)|
2t−s|f−1(y)|

= 2−t,
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where we use the earlier calculation in the second inequality.
Let ᾱ := ᾱij . Similarly,

PrM ′′
2
[α̂ = ᾱ | f(α̂) = y, α̂ = α′] =

PrM ′′
2
[α′ = α̂ = ᾱ]

PrM ′′
2
[f(α̂) = y] · PrM ′′

2
[α̂ = α′ | f(α̂) = y]

=
PrM ′′

2
[α̂ = ᾱ] · PrM ′′

2
[α′ = ᾱ | α̂ = ᾱ]

2−s|f−1(y)||f−1(y)|−1

=
2−s · PrV ′

2
[α′ = ᾱ | y]

2−s
= PrV ′

2
[α′ = ᾱ | y].

This completes the proof of the lemma.

Now we are ready to show the closeness of (P2, V
′
2)(|ψ〉〈ψ|) and M ′′

2 (|ψ〉〈ψ|).

Lemma 6. (P2, V
′
2)(|ψ〉〈ψ|) is quantum computationally indistinguishable from M ′′

2 (|ψ〉〈ψ|) if M1 outputs
simulated transcripts that are quantum computationally indistinguishable from the actual interaction in
(P1, V1). If M1 outputs simulated transcripts that are exponentially close in total variation distance to the
actual interaction transcripts in (P1, V1), then (P2, V

′
2)(|ψ〉〈ψ|) is exponentially close in trace distance to

M ′′
2 (|ψ〉〈ψ|).

Proof. From Lemma 5, it is easy to see that

M ′′
2 (|ψ〉〈ψ|) = 2−Nct

∑
(fij ,yij ,αij ,βij)ij

PrM1 [(βij)ij | (αij)ij ](
K(fij ,yij ,αij ,βij)ij

|ψ〉〈ψ|K†
(fij ,yij ,αij ,βij)ij(

|fij〉〈fij | ⊗ |yij〉〈yij | ⊗ |αij〉〈αij | ⊗ |βij〉〈βij |
)
ij

)
,

where the αij ranges over f−1
ij (yij). Let the total variation distance between the simulated transcripts of M1

and the actual interaction transcripts of (P1, V1) be at most δ. Then,

‖(P2, V
′
2)(|ψ〉〈ψ|)−M ′′

2 (|ψ〉〈ψ|)‖tr

= 2−Nct
∑

(fij ,yij ,αij ,βij)ij

|PrM1 [(βij)ij | (αij)ij ]− PrP1 [(βij)ij | (αij)ij ]|‖K(fij ,yij ,αij ,βij)ij
|ψ〉‖2

≤
∑

(βij)ij

|PrM1 [(βij)ij | (αij)ij ]− PrP1 [(βij)ij | (αij)ij ]| ≤ δ,

where the αij ranges over f−1
ij (yij). Thus, if δ is exponentially small, we see thatM ′′

2 (|ψ〉〈ψ|) is statistically
close to (P2, V

′
2)(|ψ〉〈ψ|). Also, observe that M ′′

2 (|ψ〉〈ψ|) can be obtained by an efficient quantum circuit
from the simulated transcript outputted by M1, and (P2, V

′
2)(|ψ〉〈ψ|) can be obtained by the same efficient

quantum circuit from the actual (P1, V1) interaction transcript. Thus quantum computationally indistin-
guishability of the simulated transcripts of M1 versus the actual interaction transcripts of (P1, V1) translates
into the quantum computational indistinguishability of M ′′

2 (|ψ〉〈ψ|) and (P2, V
′
2)(|ψ〉〈ψ|).

This completes the proof of the lemma.
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In order to show that M ′
2(|ψ〉〈ψ|) is exponentially close to M ′′

2 (|ψ〉〈ψ|) in trace distance, we need the
following geometric fact implicitly used by Watrous [Wat06].

Fact 3. Suppose V1 and V2 are two subspaces in a Hilbert space H . Let PV1 and PV2 be the projectors onto
V1 and V2 respectively. Let 0 < p < 1. Suppose for any unit vector |ψ1〉 in V1, it holds that ‖PV2 |ψ1〉‖2 = p
independent of |ψ1〉. Let RV1 , R|ψ1〉 denote reflection about the subspaces V1 and |ψ1〉 respectively. Then,
R|ψ1〉PV2 |ψ1〉 = RV1PV2 |ψ1〉. That is, the reflection of PV2 |ψ1〉 about the vector |ψ1〉 is the same as the
reflection of PV2 |ψ1〉 about the subspace V1.

Proof. Since P|ψ1〉 = |ψ1〉〈ψ1|, R|ψ1〉 = 2P|ψ1〉 − 11 and RV1 = 2PV1 − 11, where 11 is the identity operator
on H , we know that

R|ψ1〉PV2 |ψ1〉 −RV1PV2 |ψ1〉 = 2(|ψ1〉〈ψ1|PV2 |ψ1〉 − PV1PV2 |ψ1〉).

Denote by |ψ′
1〉 the normalized vector of PV1PV2 |ψ1〉, i.e. |ψ′

1〉 = PV1PV2 |ψ1〉/‖PV1PV2 |ψ1〉‖. Note that
‖PV1PV2 |ψ1〉‖ > 0. Decompose |ψ′

1〉 =
√
q|ψ1〉 +

√
1− q|φ1〉 where 0 < q < 1, |φ1〉 is also in V1 and

〈φ1|ψ1〉 = 0. By the standard trick of considering 〈ψ1|+〈φ1|√
2

PV2

|ψ1〉+|φ1〉√
2

= p and 〈ψ1|+i〈φ1|√
2

PV2

|ψ1〉−i|φ1〉√
2

=
p, we get

〈ψ1|PV2 |φ1〉+ 〈φ1|PV2 |ψ1〉 = 0, 〈ψ1|PV2 |φ1〉 − 〈φ1|PV2 |ψ1〉 = 0,

which implies 〈ψ1|PV2 |φ1〉 = 0. So finally by noting that

PV1PV2 |ψ1〉 = |ψ1〉〈ψ1|PV2 |ψ1〉+ |φ1〉〈φ1|PV2 |ψ1〉 = |ψ1〉〈ψ1|PV2 |ψ1〉,

we complete the proof of the fact.

Lemma 7. M ′
2(|ψ〉〈ψ|) is exponentially close to M ′′

2 (|ψ〉〈ψ|) in trace distance.

Proof. Observe that by Part 1 of Lemma 5, the probability of succeeding in Step 2(a)(iv) ofM ′
2 for any stage

i is 2c(t−s) independent of the auxiliary state |ψ〉. By Fact 3, if M ′
2 does not output Fail, then M ′

2(|ψ〉〈ψ|)
is equal to M ′′

2 (|ψ〉〈ψ|). Finally, the probability of M ′
2 outputting Fail in any stage i is exponentially small;

hence the probability of M ′
2 outputting Fail overall is also exponentially small. The completes the proof of

the lemma.

This completes the proof of Lemma 1 for non-uniform polynomial time quantum verifiers.

B Proof for the classical case of Lemma 1

The proof for the classical case is similar to that of the quantum case, only simpler as we do not need
Watrous’ rewinding lemma (Fact 3). The construction of a simulator M ′

2 for V ′
2 is similar to that in the

quantum case. The basic idea is to rewind within each stage.

B.1 Classical simulator: construction

Classical simulator M ′
2:

1. Fix V ′
2’s internal random coin rV ′

2
making it a non-uniform deterministic polynomial time machine

for Step 2 below;
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2. for i = 1 to N

(a) Repeat the following loop N · 2c(s−t) times:

i. Pick a random ri ∈ {0, 1}m;
ii. Conditioned onR1, . . . , Ri’s content being r1, . . . , ri, runM1 to get (α̂i1, β̂i1, . . . , α̂ic, β̂ic);

iii. for j = 1 to c
// Simulate the DGW transformation

A. Feed the message registers’ content so far, histij , to V ′
2 and obtain its output fij ;

B. Compute yij = fij(α̂ij) and feed yij to V ′
2 ;

C. Obtain V ′
2’s output α′ij ;

// Check whether simulation for stage i succeeded and rewind if not
iv. If α̂ij 6= α′ij for some j ∈ [c], Go to Step 2(a)(i);
v. Else, proceed to stage i + 1 in Step 2 since α̂ij = α′ij for all j ∈ [c] and the simulation of

stage i succeeded;

(b) Output Fail and terminate the whole simulation, as we have failed to simulate stage i success-
fully;

3. Output (rV ′
2
; (fij , yij , α̂ij , β̂ij)) as the simulated view of V ′

2 .

The analysis of the classical simulator M ′
2 is similar to that of its quantum counterpart and is omitted

from this extended abstract.
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